start migrasi ke word

release
a2nr 2021-04-06 15:54:45 +07:00
parent 207b6d6e3a
commit 251e783c21
7 changed files with 245 additions and 259 deletions

View File

@ -17,17 +17,19 @@ Variable yang dikendalikan pada meteode ini adalah variabel jarak antar agent ya
Koordinat yang digunakan tidak mengacu pada koordinat global. Koordinat yang digunakan tidak mengacu pada koordinat global.
Shingga pada penerapannya, formasi berdasarkan jarak menggunakan sensor yang lebih sedikit. Shingga pada penerapannya, formasi berdasarkan jarak menggunakan sensor yang lebih sedikit.
Namun salah satu permasalahan pada metode tersebut adalah penerapan model yang lebih nyata. Namun salah satu permasalahan pada metode tersebut adalah penerapan model yang lebih nyata.
Pengembangan formasi berdasarkan jarak telah dikembangkan menggunakan teori \textit{graph} Pengembangan formasi berdasarkan jarak telah dikembangkan menggunakan teori \textit{graph}
pada single dan double integrator \kutip{Oh2014} pada single dan double integrator \kutip{Oh2014}
dan menerapkannya pada simpel model dengan kendali \textit{Proportional-Integral} \kutip{Rozenheck2015}. dan telah diterapkannya pada simpel model dengan kendali \textit{Proportional-Integral}(PI) \kutip{Rozenheck2015}.
Akan tetapi pada penerapan kendali nya,
pengukuran jarak antar tetangga diperoleh dari selisih koordinat global robot dan tetangganya. Kendali PI pada penelitian sebelumnya tidak dapat langsung diterapkan menggunakan sensor jarak
karena kendali tersebut mengambil informasi jarak menggunakan selisih koordinat global kartesian dari setiap robot.
Sedangkan dalam praktiknya robot hanya bisa mengukur jarak dan tidak mengetahui koordinat Sedangkan dalam praktiknya robot hanya bisa mengukur jarak dan tidak mengetahui koordinat
dari robot tetangga. dari robot tetangga.
Selain itu, penerapan sensor jarak pada robot memiliki kekurangan untuk mengenali arah gerak
robot untuk mencapai jarak yang diinginkan.
Sehingga robot diharuskan untuk mengelola koordinat tetangganya.
Pada penelitian ini akan dikembangkan sebuah algoritma untuk mengetahui koordinat tetangga Pada penelitian ini akan dikembangkan sebuah algoritma untuk menemukan koordinat tetangga
berdasarkan informasi sensor jarak sehingga hasil pencarian koordinat tersebut dapat menggunakan informasi jarak dan digunakan untuk nilai kondisi awal pada kendali formasi berdasarkan jarak.
digunakan pada kendali formasi berdasarkan jarak.
Percobaan akan menggunakan model robot holonomic dengan harapan menjadi langkah awal Percobaan akan menggunakan model robot holonomic dengan harapan menjadi langkah awal
mengembangkan kendali formasi berdasarkan jarak menggunakan model robot yang lebih nyata. mengembangkan kendali formasi berdasarkan jarak menggunakan model robot yang lebih nyata.

View File

@ -1,7 +1,7 @@
\section{Metode} \section{Metode}
\subsection{Kendali Robot Holonomic} \subsection{Model Robot}
Berikut adalah model dari robot holonomic dalam bentuk \textit{state-space} \kutip{CORREIA20127}. Berikut adalah model dari robot holonomic dalam bentuk \textit{state-space} \kutip{CORREIA20127}.
Dimana robot menggunakan tiga buah motor yang dihubungkan pada \textit{omniwheel} sehingga robot Dimana robot menggunakan tiga buah motor yang dihubungkan pada \textit{omniwheel} sehingga robot
@ -27,6 +27,8 @@ yang diperoleh dari identifikasi secara persamaan fisika.
Matrix $K_r \in \mathbb{R}^{3 \times 3}$ adalah parameter \textit{friction} dari robot yang diestimasi dari Matrix $K_r \in \mathbb{R}^{3 \times 3}$ adalah parameter \textit{friction} dari robot yang diestimasi dari
hasil percobaan. hasil percobaan.
\subsection{Kendali Robot Holonomic}
Kendali dari robot akan menggunakan dua mode \textit{state-feedback}. Kendali dari robot akan menggunakan dua mode \textit{state-feedback}.
\textbf{Mode satu}, bertujuan untuk mencapai kecepatan robot yang diinginkan. \textbf{Mode satu}, bertujuan untuk mencapai kecepatan robot yang diinginkan.
Untuk mencapai tujuan tersebut akan menggunakan persamaan kendali sebagai berikut Untuk mencapai tujuan tersebut akan menggunakan persamaan kendali sebagai berikut
@ -64,7 +66,7 @@ menjadi $y_{c2}(t) = x_{c2}(t) = \begin{bmatrix}
A_{c2} = \begin{bmatrix} A_{c2} = \begin{bmatrix}
0 & I \\ 0 & I \\
0 & A_r \\ 0 & A_r \\
\end{bmatrix} \in \mathbb{R}^{6 \times 6} \end{bmatrix} \in \mathbb{R} ^ {6 \times 6}
$, $,
$B_{c2} = \begin{bmatrix} $B_{c2} = \begin{bmatrix}
0 \\ B_r 0 \\ B_r

View File

@ -7,5 +7,5 @@
% required. % required.
@Control{biblatex-control, @Control{biblatex-control,
options = {3.7:0:0:1:0:1:1:0:0:0:0:1:3:1:3:1:0:0:3:1:79:+:+:nty}, options = {3.7:0:0:1:0:1:1:0:0:0:0:0:3:1:3:1:0:0:3:1:79:+:+:none},
} }

View File

@ -16,60 +16,116 @@
{} {}
\endgroup \endgroup
\datalist[entry]{nty/global//global/global} \datalist[entry]{none/global//global/global}
\entry{CORREIA20127}{article}{} \entry{Parker2003}{article}{}
\name{author}{3}{}{% \name{author}{1}{}{%
{{hash=CMD}{% {{hash=PL}{%
family={Correia}, family={Parker},
familyi={C\bibinitperiod}, familyi={P\bibinitperiod},
given={Mariane\bibnamedelima Dourado}, given={Lynne},
giveni={M\bibinitperiod\bibinitdelim D\bibinitperiod}, giveni={L\bibinitperiod},
}}%
{{hash=GA}{%
family={Gustavo},
familyi={G\bibinitperiod},
given={André},
giveni={A\bibinitperiod},
}}%
{{hash=CS}{%
family={Conceição},
familyi={C\bibinitperiod},
given={Scolari},
giveni={S\bibinitperiod},
}}% }}%
} }
\keyw{Models, Friction, Parameter estimation, Autonomous mobile robots} \strng{namehash}{PL1}
\strng{namehash}{CMDGACS1} \strng{fullhash}{PL1}
\strng{fullhash}{CMDGACS1}
\field{labelnamesource}{author} \field{labelnamesource}{author}
\field{labeltitlesource}{title} \field{labeltitlesource}{title}
\field{sortinit}{C}
\field{sortinithash}{C}
\field{abstract}{%
This paper presents a model of a three-wheeled omnidirectional robot
including a static friction model. Besides the modeling is presented a
practical approach in order to estimate the coefficients of coulomb and
viscous friction, which used sensory information about force and velocity of
the robot's center of mass. The proposed model model has the voltages of the
motors as inputs and the linear and angular velocities of the robot as
outputs. Actual results and simulation with the estimated model are compared
to demonstrate the performance of the proposed modeling.%
}
\verb{doi} \verb{doi}
\verb https://doi.org/10.3182/20120905-3-HR-2030.00002 \verb 10.1007/BF02480877
\endverb \endverb
\field{issn}{1474-6670} \field{pages}{1\bibrangedash 5}
\field{note}{10th IFAC Symposium on Robot Control} \field{title}{Current research in multirobot systems}
\field{number}{22} \field{volume}{7}
\field{pages}{7 \bibrangedash 12} \field{journaltitle}{Artificial Life and Robotics}
\field{title}{Modeling of a Three Wheeled Omnidirectional Robot Including \field{month}{03}
Friction Models} \field{year}{2003}
\verb{url} \endentry
\verb http://www.sciencedirect.com/science/article/pii/S1474667016335807
\entry{Guanghua2013}{inproceedings}{}
\name{author}{4}{}{%
{{hash=GW}{%
family={Guanghua},
familyi={G\bibinitperiod},
given={Wang},
giveni={W\bibinitperiod},
}}%
{{hash=DL}{%
family={Deyi},
familyi={D\bibinitperiod},
given={Li},
giveni={L\bibinitperiod},
}}%
{{hash=WG}{%
family={Wenyan},
familyi={W\bibinitperiod},
given={Gan},
giveni={G\bibinitperiod},
}}%
{{hash=PJ}{%
family={Peng},
familyi={P\bibinitperiod},
given={Jia},
giveni={J\bibinitperiod},
}}%
}
\strng{namehash}{GW+1}
\strng{fullhash}{GWDLWGPJ1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\verb{doi}
\verb 10.1109/ISDEA.2012.316
\endverb \endverb
\field{volume}{45} \field{isbn}{978-1-4673-4893-5}
\field{journaltitle}{IFAC Proceedings Volumes} \field{pages}{1335\bibrangedash 1339}
\field{year}{2012} \field{title}{Study on Formation Control of Multi-Robot Systems}
\field{month}{01}
\field{year}{2013}
\endentry
\entry{6889491}{inproceedings}{}
\name{author}{3}{}{%
{{hash=WX}{%
family={{Wang}},
familyi={W\bibinitperiod},
given={X.},
giveni={X\bibinitperiod},
}}%
{{hash=YZ}{%
family={{Yan}},
familyi={Y\bibinitperiod},
given={Z.},
giveni={Z\bibinitperiod},
}}%
{{hash=WJ}{%
family={{Wang}},
familyi={W\bibinitperiod},
given={J.},
giveni={J\bibinitperiod},
}}%
}
\keyw{dynamic programming;mobile robots;multi-robot
systems;neurocontrollers;optimal control;predictive control;quadratic
programming;recurrent neural nets;torque control;trajectory control;model
predictive control approach;multirobot formation control problem;simplified
dual neural network;leader-follower scheme;desired trajectory
tracking;dynamic quadratic optimization problem;one-layer recurrent neural
network;optimal control input;Vectors;Lead;Wheels;Neural networks;Robot
kinematics;Mathematical model}
\strng{namehash}{WXYZWJ1}
\strng{fullhash}{WXYZWJ1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{booktitle}{2014 International Joint Conference on Neural Networks
(IJCNN)}
\verb{doi}
\verb 10.1109/IJCNN.2014.6889491
\endverb
\field{issn}{2161-4393}
\field{pages}{3161\bibrangedash 3166}
\field{title}{Model predictive control of multi-robot formation based on
the simplified dual neural network}
\field{year}{2014}
\warn{\item Invalid format of field 'month'}
\endentry \endentry
\entry{ELFERIK2016117}{article}{} \entry{ELFERIK2016117}{article}{}
@ -98,8 +154,6 @@
\strng{fullhash}{FSENMTBU1} \strng{fullhash}{FSENMTBU1}
\field{labelnamesource}{author} \field{labelnamesource}{author}
\field{labeltitlesource}{title} \field{labeltitlesource}{title}
\field{sortinit}{F}
\field{sortinithash}{F}
\field{abstract}{% \field{abstract}{%
Cooperation between autonomous robot vehicles holds several promising Cooperation between autonomous robot vehicles holds several promising
advantages like robustness, adaptability, configurability, and scalability. advantages like robustness, adaptability, configurability, and scalability.
@ -137,47 +191,102 @@
\field{year}{2016} \field{year}{2016}
\endentry \endentry
\entry{Guanghua2013}{inproceedings}{} \entry{YOSHIOKA20085149}{article}{}
\name{author}{4}{}{% \name{author}{2}{}{%
{{hash=GW}{% {{hash=YC}{%
family={Guanghua}, family={Yoshioka},
familyi={G\bibinitperiod}, familyi={Y\bibinitperiod},
given={Wang}, given={Chika},
giveni={W\bibinitperiod}, giveni={C\bibinitperiod},
}}% }}%
{{hash=DL}{% {{hash=NT}{%
family={Deyi}, family={Namerikawa},
familyi={D\bibinitperiod}, familyi={N\bibinitperiod},
given={Li}, given={Toru},
giveni={L\bibinitperiod}, giveni={T\bibinitperiod},
}}%
{{hash=WG}{%
family={Wenyan},
familyi={W\bibinitperiod},
given={Gan},
giveni={G\bibinitperiod},
}}%
{{hash=PJ}{%
family={Peng},
familyi={P\bibinitperiod},
given={Jia},
giveni={J\bibinitperiod},
}}% }}%
} }
\strng{namehash}{GW+1} \strng{namehash}{YCNT1}
\strng{fullhash}{GWDLWGPJ1} \strng{fullhash}{YCNT1}
\field{labelnamesource}{author} \field{labelnamesource}{author}
\field{labeltitlesource}{title} \field{labeltitlesource}{title}
\field{sortinit}{G} \field{abstract}{%
\field{sortinithash}{G} This paper deals with formation control strategies based on Virtual
Structure (VS) for multi-vehicle systems. We propose several control laws for
networked multi-nonholonomic vehicle systems in order to achieve VS
consensus, VS Flocking and VS Flocking with collision-avoidance. First,
Virtual Vehicle for the feedback linearization is considered, and we propose
VS consensus and Flocking control laws based on a virtual structure and
consensus algorithms. Then, VS Flocking control law considering collision
avoidance is proposed and its asymptotical stability is proven. Finally,
simulation and experimental results show effectiveness of our proposed
approaches.%
}
\verb{doi} \verb{doi}
\verb 10.1109/ISDEA.2012.316 \verb https://doi.org/10.3182/20080706-5-KR-1001.00865
\endverb \endverb
\field{isbn}{978-1-4673-4893-5} \field{issn}{1474-6670}
\field{pages}{1335\bibrangedash 1339} \field{note}{17th IFAC World Congress}
\field{title}{Study on Formation Control of Multi-Robot Systems} \field{number}{2}
\field{month}{01} \field{pages}{5149 \bibrangedash 5154}
\field{year}{2013} \field{title}{Formation Control of Nonholonomic Multi-Vehicle Systems based
on Virtual Structure}
\verb{url}
\verb http://www.sciencedirect.com/science/article/pii/S1474667016397609
\endverb
\field{volume}{41}
\field{journaltitle}{IFAC Proceedings Volumes}
\field{year}{2008}
\endentry
\entry{OH2015424}{article}{}
\name{author}{3}{}{%
{{hash=OKK}{%
family={Oh},
familyi={O\bibinitperiod},
given={Kwang-Kyo},
giveni={K\bibinithyphendelim K\bibinitperiod},
}}%
{{hash=PMC}{%
family={Park},
familyi={P\bibinitperiod},
given={Myoung-Chul},
giveni={M\bibinithyphendelim C\bibinitperiod},
}}%
{{hash=AHS}{%
family={Ahn},
familyi={A\bibinitperiod},
given={Hyo-Sung},
giveni={H\bibinithyphendelim S\bibinitperiod},
}}%
}
\keyw{Formation control, Position-based control, Displacement-based
control, Distance-based control}
\strng{namehash}{OKKPMCAHS1}
\strng{fullhash}{OKKPMCAHS1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{%
We present a survey of formation control of multi-agent systems. Focusing
on the sensing capability and the interaction topology of agents, we
categorize the existing results into position-, displacement-, and
distance-based control. We then summarize problem formulations, discuss
distinctions, and review recent results of the formation control schemes.
Further we review some other results that do not fit into the
categorization.%
}
\verb{doi}
\verb https://doi.org/10.1016/j.automatica.2014.10.022
\endverb
\field{issn}{0005-1098}
\field{pages}{424 \bibrangedash 440}
\field{title}{A survey of multi-agent formation control}
\verb{url}
\verb http://www.sciencedirect.com/science/article/pii/S0005109814004038
\endverb
\field{volume}{53}
\field{journaltitle}{Automatica}
\field{year}{2015}
\endentry \endentry
\entry{Oh2014}{article}{} \entry{Oh2014}{article}{}
@ -201,8 +310,6 @@
\strng{fullhash}{OKKAHS1} \strng{fullhash}{OKKAHS1}
\field{labelnamesource}{author} \field{labelnamesource}{author}
\field{labeltitlesource}{title} \field{labeltitlesource}{title}
\field{sortinit}{O}
\field{sortinithash}{O}
\field{abstract}{% \field{abstract}{%
SUMMARYWe study the local asymptotic stability of undirected formations of SUMMARYWe study the local asymptotic stability of undirected formations of
single-integrator and double-integrator modeled agents based on interagent single-integrator and double-integrator modeled agents based on interagent
@ -235,84 +342,6 @@
\field{year}{2014} \field{year}{2014}
\endentry \endentry
\entry{OH2015424}{article}{}
\name{author}{3}{}{%
{{hash=OKK}{%
family={Oh},
familyi={O\bibinitperiod},
given={Kwang-Kyo},
giveni={K\bibinithyphendelim K\bibinitperiod},
}}%
{{hash=PMC}{%
family={Park},
familyi={P\bibinitperiod},
given={Myoung-Chul},
giveni={M\bibinithyphendelim C\bibinitperiod},
}}%
{{hash=AHS}{%
family={Ahn},
familyi={A\bibinitperiod},
given={Hyo-Sung},
giveni={H\bibinithyphendelim S\bibinitperiod},
}}%
}
\keyw{Formation control, Position-based control, Displacement-based
control, Distance-based control}
\strng{namehash}{OKKPMCAHS1}
\strng{fullhash}{OKKPMCAHS1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{sortinit}{O}
\field{sortinithash}{O}
\field{abstract}{%
We present a survey of formation control of multi-agent systems. Focusing
on the sensing capability and the interaction topology of agents, we
categorize the existing results into position-, displacement-, and
distance-based control. We then summarize problem formulations, discuss
distinctions, and review recent results of the formation control schemes.
Further we review some other results that do not fit into the
categorization.%
}
\verb{doi}
\verb https://doi.org/10.1016/j.automatica.2014.10.022
\endverb
\field{issn}{0005-1098}
\field{pages}{424 \bibrangedash 440}
\field{title}{A survey of multi-agent formation control}
\verb{url}
\verb http://www.sciencedirect.com/science/article/pii/S0005109814004038
\endverb
\field{volume}{53}
\field{journaltitle}{Automatica}
\field{year}{2015}
\endentry
\entry{Parker2003}{article}{}
\name{author}{1}{}{%
{{hash=PL}{%
family={Parker},
familyi={P\bibinitperiod},
given={Lynne},
giveni={L\bibinitperiod},
}}%
}
\strng{namehash}{PL1}
\strng{fullhash}{PL1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{sortinit}{P}
\field{sortinithash}{P}
\verb{doi}
\verb 10.1007/BF02480877
\endverb
\field{pages}{1\bibrangedash 5}
\field{title}{Current research in multirobot systems}
\field{volume}{7}
\field{journaltitle}{Artificial Life and Robotics}
\field{month}{03}
\field{year}{2003}
\endentry
\entry{Rozenheck2015}{inproceedings}{} \entry{Rozenheck2015}{inproceedings}{}
\name{author}{3}{}{% \name{author}{3}{}{%
{{hash=RO}{% {{hash=RO}{%
@ -345,8 +374,6 @@
\strng{fullhash}{ROZSZD1} \strng{fullhash}{ROZSZD1}
\field{labelnamesource}{author} \field{labelnamesource}{author}
\field{labeltitlesource}{title} \field{labeltitlesource}{title}
\field{sortinit}{R}
\field{sortinithash}{R}
\field{booktitle}{2015 European Control Conference (ECC)} \field{booktitle}{2015 European Control Conference (ECC)}
\verb{doi} \verb{doi}
\verb 10.1109/ECC.2015.7330781 \verb 10.1109/ECC.2015.7330781
@ -358,102 +385,57 @@
\warn{\item Invalid format of field 'month'} \warn{\item Invalid format of field 'month'}
\endentry \endentry
\entry{6889491}{inproceedings}{} \entry{CORREIA20127}{article}{}
\name{author}{3}{}{% \name{author}{3}{}{%
{{hash=WX}{% {{hash=CMD}{%
family={{Wang}}, family={Correia},
familyi={W\bibinitperiod}, familyi={C\bibinitperiod},
given={X.}, given={Mariane\bibnamedelima Dourado},
giveni={X\bibinitperiod}, giveni={M\bibinitperiod\bibinitdelim D\bibinitperiod},
}}% }}%
{{hash=YZ}{% {{hash=GA}{%
family={{Yan}}, family={Gustavo},
familyi={Y\bibinitperiod}, familyi={G\bibinitperiod},
given={Z.}, given={André},
giveni={Z\bibinitperiod}, giveni={A\bibinitperiod},
}}% }}%
{{hash=WJ}{% {{hash=CS}{%
family={{Wang}}, family={Conceição},
familyi={W\bibinitperiod}, familyi={C\bibinitperiod},
given={J.}, given={Scolari},
giveni={J\bibinitperiod}, giveni={S\bibinitperiod},
}}% }}%
} }
\keyw{dynamic programming;mobile robots;multi-robot \keyw{Models, Friction, Parameter estimation, Autonomous mobile robots}
systems;neurocontrollers;optimal control;predictive control;quadratic \strng{namehash}{CMDGACS1}
programming;recurrent neural nets;torque control;trajectory control;model \strng{fullhash}{CMDGACS1}
predictive control approach;multirobot formation control problem;simplified
dual neural network;leader-follower scheme;desired trajectory
tracking;dynamic quadratic optimization problem;one-layer recurrent neural
network;optimal control input;Vectors;Lead;Wheels;Neural networks;Robot
kinematics;Mathematical model}
\strng{namehash}{WXYZWJ1}
\strng{fullhash}{WXYZWJ1}
\field{labelnamesource}{author} \field{labelnamesource}{author}
\field{labeltitlesource}{title} \field{labeltitlesource}{title}
\field{sortinit}{W}
\field{sortinithash}{W}
\field{booktitle}{2014 International Joint Conference on Neural Networks
(IJCNN)}
\verb{doi}
\verb 10.1109/IJCNN.2014.6889491
\endverb
\field{issn}{2161-4393}
\field{pages}{3161\bibrangedash 3166}
\field{title}{Model predictive control of multi-robot formation based on
the simplified dual neural network}
\field{year}{2014}
\warn{\item Invalid format of field 'month'}
\endentry
\entry{YOSHIOKA20085149}{article}{}
\name{author}{2}{}{%
{{hash=YC}{%
family={Yoshioka},
familyi={Y\bibinitperiod},
given={Chika},
giveni={C\bibinitperiod},
}}%
{{hash=NT}{%
family={Namerikawa},
familyi={N\bibinitperiod},
given={Toru},
giveni={T\bibinitperiod},
}}%
}
\strng{namehash}{YCNT1}
\strng{fullhash}{YCNT1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{sortinit}{Y}
\field{sortinithash}{Y}
\field{abstract}{% \field{abstract}{%
This paper deals with formation control strategies based on Virtual This paper presents a model of a three-wheeled omnidirectional robot
Structure (VS) for multi-vehicle systems. We propose several control laws for including a static friction model. Besides the modeling is presented a
networked multi-nonholonomic vehicle systems in order to achieve VS practical approach in order to estimate the coefficients of coulomb and
consensus, VS Flocking and VS Flocking with collision-avoidance. First, viscous friction, which used sensory information about force and velocity of
Virtual Vehicle for the feedback linearization is considered, and we propose the robot's center of mass. The proposed model model has the voltages of the
VS consensus and Flocking control laws based on a virtual structure and motors as inputs and the linear and angular velocities of the robot as
consensus algorithms. Then, VS Flocking control law considering collision outputs. Actual results and simulation with the estimated model are compared
avoidance is proposed and its asymptotical stability is proven. Finally, to demonstrate the performance of the proposed modeling.%
simulation and experimental results show effectiveness of our proposed
approaches.%
} }
\verb{doi} \verb{doi}
\verb https://doi.org/10.3182/20080706-5-KR-1001.00865 \verb https://doi.org/10.3182/20120905-3-HR-2030.00002
\endverb \endverb
\field{issn}{1474-6670} \field{issn}{1474-6670}
\field{note}{17th IFAC World Congress} \field{note}{10th IFAC Symposium on Robot Control}
\field{number}{2} \field{number}{22}
\field{pages}{5149 \bibrangedash 5154} \field{pages}{7 \bibrangedash 12}
\field{title}{Formation Control of Nonholonomic Multi-Vehicle Systems based \field{title}{Modeling of a Three Wheeled Omnidirectional Robot Including
on Virtual Structure} Friction Models}
\verb{url} \verb{url}
\verb http://www.sciencedirect.com/science/article/pii/S1474667016397609 \verb http://www.sciencedirect.com/science/article/pii/S1474667016335807
\endverb \endverb
\field{volume}{41} \field{volume}{45}
\field{journaltitle}{IFAC Proceedings Volumes} \field{journaltitle}{IFAC Proceedings Volumes}
\field{year}{2008} \field{year}{2012}
\endentry \endentry
\enddatalist \enddatalist
\endinput \endinput

Binary file not shown.

View File

@ -11,10 +11,10 @@
\Var{\Kota} {Malang} \Var{\Kota} {Malang}
% Judul laporan. % Judul laporan.
\var{\judul}{Kendali Formasi Berdasarkan Jarak Menggunakan Algoritma Cosinus Pada Mobile Robot} \var{\judul}{Kendali Formasi Mobile Robot Berdasarkan Jarak Menggunakan Algoritma Cosinus}
% %
% Tulis kembali judul laporan, kali ini akan diubah menjadi huruf kapital % Tulis kembali judul laporan, kali ini akan diubah menjadi huruf kapital
\Var{\Judul}{Kendali Formasi Berdasarkan Jarak Menggunakan Algoritma Cosinus Pada Mobile Robot} \Var{\Judul}{Kendali Formasi Mobile Robot Berdasarkan Jarak Menggunakan Algoritma Cosinus}
% %
% Tulis kembali judul laporan namun dengan bahasa Ingris % Tulis kembali judul laporan namun dengan bahasa Ingris
\var{\judulInggris}{Formation Control Distance-Based Using Cosinus Algoritm For Multi Mobile-Robot} \var{\judulInggris}{Formation Control Distance-Based Using Cosinus Algoritm For Multi Mobile-Robot}

View File

@ -220,7 +220,7 @@
% %
\@ifclassloaded{article} \@ifclassloaded{article}
{ {
\usepackage[backend=bibtex,autocite=inline]{biblatex} \usepackage[backend=bibtex,autocite=inline,sorting=none]{biblatex}
} }
{ {