diff --git a/BAB1/art_pendahuluan.tex b/BAB1/art_pendahuluan.tex index 060bee7..98db493 100644 --- a/BAB1/art_pendahuluan.tex +++ b/BAB1/art_pendahuluan.tex @@ -17,17 +17,19 @@ Variable yang dikendalikan pada meteode ini adalah variabel jarak antar agent ya Koordinat yang digunakan tidak mengacu pada koordinat global. Shingga pada penerapannya, formasi berdasarkan jarak menggunakan sensor yang lebih sedikit. Namun salah satu permasalahan pada metode tersebut adalah penerapan model yang lebih nyata. - Pengembangan formasi berdasarkan jarak telah dikembangkan menggunakan teori \textit{graph} pada single dan double integrator \kutip{Oh2014} -dan menerapkannya pada simpel model dengan kendali \textit{Proportional-Integral} \kutip{Rozenheck2015}. -Akan tetapi pada penerapan kendali nya, -pengukuran jarak antar tetangga diperoleh dari selisih koordinat global robot dan tetangganya. +dan telah diterapkannya pada simpel model dengan kendali \textit{Proportional-Integral}(PI) \kutip{Rozenheck2015}. + +Kendali PI pada penelitian sebelumnya tidak dapat langsung diterapkan menggunakan sensor jarak +karena kendali tersebut mengambil informasi jarak menggunakan selisih koordinat global kartesian dari setiap robot. Sedangkan dalam praktiknya robot hanya bisa mengukur jarak dan tidak mengetahui koordinat dari robot tetangga. +Selain itu, penerapan sensor jarak pada robot memiliki kekurangan untuk mengenali arah gerak +robot untuk mencapai jarak yang diinginkan. +Sehingga robot diharuskan untuk mengelola koordinat tetangganya. -Pada penelitian ini akan dikembangkan sebuah algoritma untuk mengetahui koordinat tetangga -berdasarkan informasi sensor jarak sehingga hasil pencarian koordinat tersebut dapat -digunakan pada kendali formasi berdasarkan jarak. +Pada penelitian ini akan dikembangkan sebuah algoritma untuk menemukan koordinat tetangga +menggunakan informasi jarak dan digunakan untuk nilai kondisi awal pada kendali formasi berdasarkan jarak. Percobaan akan menggunakan model robot holonomic dengan harapan menjadi langkah awal mengembangkan kendali formasi berdasarkan jarak menggunakan model robot yang lebih nyata. \ No newline at end of file diff --git a/BAB4/art_metode.tex b/BAB4/art_metode.tex index d869ca6..ba4aa08 100644 --- a/BAB4/art_metode.tex +++ b/BAB4/art_metode.tex @@ -1,7 +1,7 @@ \section{Metode} -\subsection{Kendali Robot Holonomic} +\subsection{Model Robot} Berikut adalah model dari robot holonomic dalam bentuk \textit{state-space} \kutip{CORREIA20127}. Dimana robot menggunakan tiga buah motor yang dihubungkan pada \textit{omniwheel} sehingga robot @@ -27,6 +27,8 @@ yang diperoleh dari identifikasi secara persamaan fisika. Matrix $K_r \in \mathbb{R}^{3 \times 3}$ adalah parameter \textit{friction} dari robot yang diestimasi dari hasil percobaan. +\subsection{Kendali Robot Holonomic} + Kendali dari robot akan menggunakan dua mode \textit{state-feedback}. \textbf{Mode satu}, bertujuan untuk mencapai kecepatan robot yang diinginkan. Untuk mencapai tujuan tersebut akan menggunakan persamaan kendali sebagai berikut @@ -64,7 +66,7 @@ menjadi $y_{c2}(t) = x_{c2}(t) = \begin{bmatrix} A_{c2} = \begin{bmatrix} 0 & I \\ 0 & A_r \\ - \end{bmatrix} \in \mathbb{R}^{6 \times 6} + \end{bmatrix} \in \mathbb{R} ^ {6 \times 6} $, $B_{c2} = \begin{bmatrix} 0 \\ B_r diff --git a/article-blx.bib b/article-blx.bib index 99037a8..0a34874 100644 --- a/article-blx.bib +++ b/article-blx.bib @@ -7,5 +7,5 @@ % required. @Control{biblatex-control, - options = {3.7:0:0:1:0:1:1:0:0:0:0:1:3:1:3:1:0:0:3:1:79:+:+:nty}, + options = {3.7:0:0:1:0:1:1:0:0:0:0:0:3:1:3:1:0:0:3:1:79:+:+:none}, } diff --git a/article.bbl b/article.bbl index 52ee576..0d9748d 100644 --- a/article.bbl +++ b/article.bbl @@ -16,60 +16,116 @@ {} \endgroup -\datalist[entry]{nty/global//global/global} - \entry{CORREIA20127}{article}{} - \name{author}{3}{}{% - {{hash=CMD}{% - family={Correia}, - familyi={C\bibinitperiod}, - given={Mariane\bibnamedelima Dourado}, - giveni={M\bibinitperiod\bibinitdelim D\bibinitperiod}, - }}% - {{hash=GA}{% - family={Gustavo}, - familyi={G\bibinitperiod}, - given={André}, - giveni={A\bibinitperiod}, - }}% - {{hash=CS}{% - family={Conceição}, - familyi={C\bibinitperiod}, - given={Scolari}, - giveni={S\bibinitperiod}, +\datalist[entry]{none/global//global/global} + \entry{Parker2003}{article}{} + \name{author}{1}{}{% + {{hash=PL}{% + family={Parker}, + familyi={P\bibinitperiod}, + given={Lynne}, + giveni={L\bibinitperiod}, }}% } - \keyw{Models, Friction, Parameter estimation, Autonomous mobile robots} - \strng{namehash}{CMDGACS1} - \strng{fullhash}{CMDGACS1} + \strng{namehash}{PL1} + \strng{fullhash}{PL1} \field{labelnamesource}{author} \field{labeltitlesource}{title} - \field{sortinit}{C} - \field{sortinithash}{C} - \field{abstract}{% - This paper presents a model of a three-wheeled omnidirectional robot - including a static friction model. Besides the modeling is presented a - practical approach in order to estimate the coefficients of coulomb and - viscous friction, which used sensory information about force and velocity of - the robot's center of mass. The proposed model model has the voltages of the - motors as inputs and the linear and angular velocities of the robot as - outputs. Actual results and simulation with the estimated model are compared - to demonstrate the performance of the proposed modeling.% - } \verb{doi} - \verb https://doi.org/10.3182/20120905-3-HR-2030.00002 + \verb 10.1007/BF02480877 \endverb - \field{issn}{1474-6670} - \field{note}{10th IFAC Symposium on Robot Control} - \field{number}{22} - \field{pages}{7 \bibrangedash 12} - \field{title}{Modeling of a Three Wheeled Omnidirectional Robot Including - Friction Models} - \verb{url} - \verb http://www.sciencedirect.com/science/article/pii/S1474667016335807 + \field{pages}{1\bibrangedash 5} + \field{title}{Current research in multirobot systems} + \field{volume}{7} + \field{journaltitle}{Artificial Life and Robotics} + \field{month}{03} + \field{year}{2003} + \endentry + + \entry{Guanghua2013}{inproceedings}{} + \name{author}{4}{}{% + {{hash=GW}{% + family={Guanghua}, + familyi={G\bibinitperiod}, + given={Wang}, + giveni={W\bibinitperiod}, + }}% + {{hash=DL}{% + family={Deyi}, + familyi={D\bibinitperiod}, + given={Li}, + giveni={L\bibinitperiod}, + }}% + {{hash=WG}{% + family={Wenyan}, + familyi={W\bibinitperiod}, + given={Gan}, + giveni={G\bibinitperiod}, + }}% + {{hash=PJ}{% + family={Peng}, + familyi={P\bibinitperiod}, + given={Jia}, + giveni={J\bibinitperiod}, + }}% + } + \strng{namehash}{GW+1} + \strng{fullhash}{GWDLWGPJ1} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \verb{doi} + \verb 10.1109/ISDEA.2012.316 \endverb - \field{volume}{45} - \field{journaltitle}{IFAC Proceedings Volumes} - \field{year}{2012} + \field{isbn}{978-1-4673-4893-5} + \field{pages}{1335\bibrangedash 1339} + \field{title}{Study on Formation Control of Multi-Robot Systems} + \field{month}{01} + \field{year}{2013} + \endentry + + \entry{6889491}{inproceedings}{} + \name{author}{3}{}{% + {{hash=WX}{% + family={{Wang}}, + familyi={W\bibinitperiod}, + given={X.}, + giveni={X\bibinitperiod}, + }}% + {{hash=YZ}{% + family={{Yan}}, + familyi={Y\bibinitperiod}, + given={Z.}, + giveni={Z\bibinitperiod}, + }}% + {{hash=WJ}{% + family={{Wang}}, + familyi={W\bibinitperiod}, + given={J.}, + giveni={J\bibinitperiod}, + }}% + } + \keyw{dynamic programming;mobile robots;multi-robot + systems;neurocontrollers;optimal control;predictive control;quadratic + programming;recurrent neural nets;torque control;trajectory control;model + predictive control approach;multirobot formation control problem;simplified + dual neural network;leader-follower scheme;desired trajectory + tracking;dynamic quadratic optimization problem;one-layer recurrent neural + network;optimal control input;Vectors;Lead;Wheels;Neural networks;Robot + kinematics;Mathematical model} + \strng{namehash}{WXYZWJ1} + \strng{fullhash}{WXYZWJ1} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{booktitle}{2014 International Joint Conference on Neural Networks + (IJCNN)} + \verb{doi} + \verb 10.1109/IJCNN.2014.6889491 + \endverb + \field{issn}{2161-4393} + \field{pages}{3161\bibrangedash 3166} + \field{title}{Model predictive control of multi-robot formation based on + the simplified dual neural network} + \field{year}{2014} + \warn{\item Invalid format of field 'month'} \endentry \entry{ELFERIK2016117}{article}{} @@ -98,8 +154,6 @@ \strng{fullhash}{FSENMTBU1} \field{labelnamesource}{author} \field{labeltitlesource}{title} - \field{sortinit}{F} - \field{sortinithash}{F} \field{abstract}{% Cooperation between autonomous robot vehicles holds several promising advantages like robustness, adaptability, configurability, and scalability. @@ -137,47 +191,102 @@ \field{year}{2016} \endentry - \entry{Guanghua2013}{inproceedings}{} - \name{author}{4}{}{% - {{hash=GW}{% - family={Guanghua}, - familyi={G\bibinitperiod}, - given={Wang}, - giveni={W\bibinitperiod}, + \entry{YOSHIOKA20085149}{article}{} + \name{author}{2}{}{% + {{hash=YC}{% + family={Yoshioka}, + familyi={Y\bibinitperiod}, + given={Chika}, + giveni={C\bibinitperiod}, }}% - {{hash=DL}{% - family={Deyi}, - familyi={D\bibinitperiod}, - given={Li}, - giveni={L\bibinitperiod}, - }}% - {{hash=WG}{% - family={Wenyan}, - familyi={W\bibinitperiod}, - given={Gan}, - giveni={G\bibinitperiod}, - }}% - {{hash=PJ}{% - family={Peng}, - familyi={P\bibinitperiod}, - given={Jia}, - giveni={J\bibinitperiod}, + {{hash=NT}{% + family={Namerikawa}, + familyi={N\bibinitperiod}, + given={Toru}, + giveni={T\bibinitperiod}, }}% } - \strng{namehash}{GW+1} - \strng{fullhash}{GWDLWGPJ1} + \strng{namehash}{YCNT1} + \strng{fullhash}{YCNT1} \field{labelnamesource}{author} \field{labeltitlesource}{title} - \field{sortinit}{G} - \field{sortinithash}{G} + \field{abstract}{% + This paper deals with formation control strategies based on Virtual + Structure (VS) for multi-vehicle systems. We propose several control laws for + networked multi-nonholonomic vehicle systems in order to achieve VS + consensus, VS Flocking and VS Flocking with collision-avoidance. First, + Virtual Vehicle for the feedback linearization is considered, and we propose + VS consensus and Flocking control laws based on a virtual structure and + consensus algorithms. Then, VS Flocking control law considering collision + avoidance is proposed and its asymptotical stability is proven. Finally, + simulation and experimental results show effectiveness of our proposed + approaches.% + } \verb{doi} - \verb 10.1109/ISDEA.2012.316 + \verb https://doi.org/10.3182/20080706-5-KR-1001.00865 \endverb - \field{isbn}{978-1-4673-4893-5} - \field{pages}{1335\bibrangedash 1339} - \field{title}{Study on Formation Control of Multi-Robot Systems} - \field{month}{01} - \field{year}{2013} + \field{issn}{1474-6670} + \field{note}{17th IFAC World Congress} + \field{number}{2} + \field{pages}{5149 \bibrangedash 5154} + \field{title}{Formation Control of Nonholonomic Multi-Vehicle Systems based + on Virtual Structure} + \verb{url} + \verb http://www.sciencedirect.com/science/article/pii/S1474667016397609 + \endverb + \field{volume}{41} + \field{journaltitle}{IFAC Proceedings Volumes} + \field{year}{2008} + \endentry + + \entry{OH2015424}{article}{} + \name{author}{3}{}{% + {{hash=OKK}{% + family={Oh}, + familyi={O\bibinitperiod}, + given={Kwang-Kyo}, + giveni={K\bibinithyphendelim K\bibinitperiod}, + }}% + {{hash=PMC}{% + family={Park}, + familyi={P\bibinitperiod}, + given={Myoung-Chul}, + giveni={M\bibinithyphendelim C\bibinitperiod}, + }}% + {{hash=AHS}{% + family={Ahn}, + familyi={A\bibinitperiod}, + given={Hyo-Sung}, + giveni={H\bibinithyphendelim S\bibinitperiod}, + }}% + } + \keyw{Formation control, Position-based control, Displacement-based + control, Distance-based control} + \strng{namehash}{OKKPMCAHS1} + \strng{fullhash}{OKKPMCAHS1} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{abstract}{% + We present a survey of formation control of multi-agent systems. Focusing + on the sensing capability and the interaction topology of agents, we + categorize the existing results into position-, displacement-, and + distance-based control. We then summarize problem formulations, discuss + distinctions, and review recent results of the formation control schemes. + Further we review some other results that do not fit into the + categorization.% + } + \verb{doi} + \verb https://doi.org/10.1016/j.automatica.2014.10.022 + \endverb + \field{issn}{0005-1098} + \field{pages}{424 \bibrangedash 440} + \field{title}{A survey of multi-agent formation control} + \verb{url} + \verb http://www.sciencedirect.com/science/article/pii/S0005109814004038 + \endverb + \field{volume}{53} + \field{journaltitle}{Automatica} + \field{year}{2015} \endentry \entry{Oh2014}{article}{} @@ -201,8 +310,6 @@ \strng{fullhash}{OKKAHS1} \field{labelnamesource}{author} \field{labeltitlesource}{title} - \field{sortinit}{O} - \field{sortinithash}{O} \field{abstract}{% SUMMARYWe study the local asymptotic stability of undirected formations of single-integrator and double-integrator modeled agents based on interagent @@ -235,84 +342,6 @@ \field{year}{2014} \endentry - \entry{OH2015424}{article}{} - \name{author}{3}{}{% - {{hash=OKK}{% - family={Oh}, - familyi={O\bibinitperiod}, - given={Kwang-Kyo}, - giveni={K\bibinithyphendelim K\bibinitperiod}, - }}% - {{hash=PMC}{% - family={Park}, - familyi={P\bibinitperiod}, - given={Myoung-Chul}, - giveni={M\bibinithyphendelim C\bibinitperiod}, - }}% - {{hash=AHS}{% - family={Ahn}, - familyi={A\bibinitperiod}, - given={Hyo-Sung}, - giveni={H\bibinithyphendelim S\bibinitperiod}, - }}% - } - \keyw{Formation control, Position-based control, Displacement-based - control, Distance-based control} - \strng{namehash}{OKKPMCAHS1} - \strng{fullhash}{OKKPMCAHS1} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{sortinit}{O} - \field{sortinithash}{O} - \field{abstract}{% - We present a survey of formation control of multi-agent systems. Focusing - on the sensing capability and the interaction topology of agents, we - categorize the existing results into position-, displacement-, and - distance-based control. We then summarize problem formulations, discuss - distinctions, and review recent results of the formation control schemes. - Further we review some other results that do not fit into the - categorization.% - } - \verb{doi} - \verb https://doi.org/10.1016/j.automatica.2014.10.022 - \endverb - \field{issn}{0005-1098} - \field{pages}{424 \bibrangedash 440} - \field{title}{A survey of multi-agent formation control} - \verb{url} - \verb http://www.sciencedirect.com/science/article/pii/S0005109814004038 - \endverb - \field{volume}{53} - \field{journaltitle}{Automatica} - \field{year}{2015} - \endentry - - \entry{Parker2003}{article}{} - \name{author}{1}{}{% - {{hash=PL}{% - family={Parker}, - familyi={P\bibinitperiod}, - given={Lynne}, - giveni={L\bibinitperiod}, - }}% - } - \strng{namehash}{PL1} - \strng{fullhash}{PL1} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{sortinit}{P} - \field{sortinithash}{P} - \verb{doi} - \verb 10.1007/BF02480877 - \endverb - \field{pages}{1\bibrangedash 5} - \field{title}{Current research in multirobot systems} - \field{volume}{7} - \field{journaltitle}{Artificial Life and Robotics} - \field{month}{03} - \field{year}{2003} - \endentry - \entry{Rozenheck2015}{inproceedings}{} \name{author}{3}{}{% {{hash=RO}{% @@ -345,8 +374,6 @@ \strng{fullhash}{ROZSZD1} \field{labelnamesource}{author} \field{labeltitlesource}{title} - \field{sortinit}{R} - \field{sortinithash}{R} \field{booktitle}{2015 European Control Conference (ECC)} \verb{doi} \verb 10.1109/ECC.2015.7330781 @@ -358,102 +385,57 @@ \warn{\item Invalid format of field 'month'} \endentry - \entry{6889491}{inproceedings}{} + \entry{CORREIA20127}{article}{} \name{author}{3}{}{% - {{hash=WX}{% - family={{Wang}}, - familyi={W\bibinitperiod}, - given={X.}, - giveni={X\bibinitperiod}, + {{hash=CMD}{% + family={Correia}, + familyi={C\bibinitperiod}, + given={Mariane\bibnamedelima Dourado}, + giveni={M\bibinitperiod\bibinitdelim D\bibinitperiod}, }}% - {{hash=YZ}{% - family={{Yan}}, - familyi={Y\bibinitperiod}, - given={Z.}, - giveni={Z\bibinitperiod}, + {{hash=GA}{% + family={Gustavo}, + familyi={G\bibinitperiod}, + given={André}, + giveni={A\bibinitperiod}, }}% - {{hash=WJ}{% - family={{Wang}}, - familyi={W\bibinitperiod}, - given={J.}, - giveni={J\bibinitperiod}, + {{hash=CS}{% + family={Conceição}, + familyi={C\bibinitperiod}, + given={Scolari}, + giveni={S\bibinitperiod}, }}% } - \keyw{dynamic programming;mobile robots;multi-robot - systems;neurocontrollers;optimal control;predictive control;quadratic - programming;recurrent neural nets;torque control;trajectory control;model - predictive control approach;multirobot formation control problem;simplified - dual neural network;leader-follower scheme;desired trajectory - tracking;dynamic quadratic optimization problem;one-layer recurrent neural - network;optimal control input;Vectors;Lead;Wheels;Neural networks;Robot - kinematics;Mathematical model} - \strng{namehash}{WXYZWJ1} - \strng{fullhash}{WXYZWJ1} + \keyw{Models, Friction, Parameter estimation, Autonomous mobile robots} + \strng{namehash}{CMDGACS1} + \strng{fullhash}{CMDGACS1} \field{labelnamesource}{author} \field{labeltitlesource}{title} - \field{sortinit}{W} - \field{sortinithash}{W} - \field{booktitle}{2014 International Joint Conference on Neural Networks - (IJCNN)} - \verb{doi} - \verb 10.1109/IJCNN.2014.6889491 - \endverb - \field{issn}{2161-4393} - \field{pages}{3161\bibrangedash 3166} - \field{title}{Model predictive control of multi-robot formation based on - the simplified dual neural network} - \field{year}{2014} - \warn{\item Invalid format of field 'month'} - \endentry - - \entry{YOSHIOKA20085149}{article}{} - \name{author}{2}{}{% - {{hash=YC}{% - family={Yoshioka}, - familyi={Y\bibinitperiod}, - given={Chika}, - giveni={C\bibinitperiod}, - }}% - {{hash=NT}{% - family={Namerikawa}, - familyi={N\bibinitperiod}, - given={Toru}, - giveni={T\bibinitperiod}, - }}% - } - \strng{namehash}{YCNT1} - \strng{fullhash}{YCNT1} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{sortinit}{Y} - \field{sortinithash}{Y} \field{abstract}{% - This paper deals with formation control strategies based on Virtual - Structure (VS) for multi-vehicle systems. We propose several control laws for - networked multi-nonholonomic vehicle systems in order to achieve VS - consensus, VS Flocking and VS Flocking with collision-avoidance. First, - Virtual Vehicle for the feedback linearization is considered, and we propose - VS consensus and Flocking control laws based on a virtual structure and - consensus algorithms. Then, VS Flocking control law considering collision - avoidance is proposed and its asymptotical stability is proven. Finally, - simulation and experimental results show effectiveness of our proposed - approaches.% + This paper presents a model of a three-wheeled omnidirectional robot + including a static friction model. Besides the modeling is presented a + practical approach in order to estimate the coefficients of coulomb and + viscous friction, which used sensory information about force and velocity of + the robot's center of mass. The proposed model model has the voltages of the + motors as inputs and the linear and angular velocities of the robot as + outputs. Actual results and simulation with the estimated model are compared + to demonstrate the performance of the proposed modeling.% } \verb{doi} - \verb https://doi.org/10.3182/20080706-5-KR-1001.00865 + \verb https://doi.org/10.3182/20120905-3-HR-2030.00002 \endverb \field{issn}{1474-6670} - \field{note}{17th IFAC World Congress} - \field{number}{2} - \field{pages}{5149 \bibrangedash 5154} - \field{title}{Formation Control of Nonholonomic Multi-Vehicle Systems based - on Virtual Structure} + \field{note}{10th IFAC Symposium on Robot Control} + \field{number}{22} + \field{pages}{7 \bibrangedash 12} + \field{title}{Modeling of a Three Wheeled Omnidirectional Robot Including + Friction Models} \verb{url} - \verb http://www.sciencedirect.com/science/article/pii/S1474667016397609 + \verb http://www.sciencedirect.com/science/article/pii/S1474667016335807 \endverb - \field{volume}{41} + \field{volume}{45} \field{journaltitle}{IFAC Proceedings Volumes} - \field{year}{2008} + \field{year}{2012} \endentry \enddatalist \endinput diff --git a/article.pdf b/article.pdf index 5d3c9b5..66209a3 100644 Binary files a/article.pdf and b/article.pdf differ diff --git a/laporan_setting.tex b/laporan_setting.tex index f69c0b2..9519f1a 100644 --- a/laporan_setting.tex +++ b/laporan_setting.tex @@ -11,10 +11,10 @@ \Var{\Kota} {Malang} % Judul laporan. -\var{\judul}{Kendali Formasi Berdasarkan Jarak Menggunakan Algoritma Cosinus Pada Mobile Robot} +\var{\judul}{Kendali Formasi Mobile Robot Berdasarkan Jarak Menggunakan Algoritma Cosinus} % % Tulis kembali judul laporan, kali ini akan diubah menjadi huruf kapital -\Var{\Judul}{Kendali Formasi Berdasarkan Jarak Menggunakan Algoritma Cosinus Pada Mobile Robot} +\Var{\Judul}{Kendali Formasi Mobile Robot Berdasarkan Jarak Menggunakan Algoritma Cosinus} % % Tulis kembali judul laporan namun dengan bahasa Ingris \var{\judulInggris}{Formation Control Distance-Based Using Cosinus Algoritm For Multi Mobile-Robot} diff --git a/uithesis.sty b/uithesis.sty index e793eee..e48696d 100644 --- a/uithesis.sty +++ b/uithesis.sty @@ -220,7 +220,7 @@ % \@ifclassloaded{article} { - \usepackage[backend=bibtex,autocite=inline]{biblatex} + \usepackage[backend=bibtex,autocite=inline,sorting=none]{biblatex} } {