start migrasi ke word
							parent
							
								
									207b6d6e3a
								
							
						
					
					
						commit
						251e783c21
					
				| 
						 | 
				
			
			@ -17,17 +17,19 @@ Variable yang dikendalikan pada meteode ini adalah variabel jarak antar agent ya
 | 
			
		|||
Koordinat yang digunakan tidak mengacu pada koordinat global.
 | 
			
		||||
Shingga pada penerapannya, formasi berdasarkan jarak menggunakan sensor yang lebih sedikit.
 | 
			
		||||
Namun salah satu permasalahan pada metode tersebut adalah penerapan model yang lebih nyata.
 | 
			
		||||
 | 
			
		||||
Pengembangan formasi berdasarkan jarak telah dikembangkan menggunakan teori \textit{graph}
 | 
			
		||||
pada single dan double integrator \kutip{Oh2014}
 | 
			
		||||
dan menerapkannya pada simpel model dengan kendali \textit{Proportional-Integral} \kutip{Rozenheck2015}.
 | 
			
		||||
Akan tetapi pada penerapan kendali nya, 
 | 
			
		||||
pengukuran jarak antar tetangga diperoleh dari selisih koordinat global robot dan tetangganya.
 | 
			
		||||
dan telah diterapkannya pada simpel model dengan kendali \textit{Proportional-Integral}(PI) \kutip{Rozenheck2015}.
 | 
			
		||||
 | 
			
		||||
Kendali PI pada penelitian sebelumnya tidak dapat langsung diterapkan menggunakan sensor jarak
 | 
			
		||||
karena kendali tersebut mengambil informasi jarak menggunakan selisih koordinat global kartesian dari setiap robot.
 | 
			
		||||
Sedangkan dalam praktiknya robot hanya bisa mengukur jarak dan tidak mengetahui koordinat
 | 
			
		||||
dari robot tetangga.
 | 
			
		||||
Selain itu, penerapan sensor jarak pada robot memiliki kekurangan untuk mengenali arah gerak
 | 
			
		||||
robot untuk mencapai jarak yang diinginkan.
 | 
			
		||||
Sehingga robot diharuskan untuk mengelola koordinat tetangganya.
 | 
			
		||||
 | 
			
		||||
Pada penelitian ini akan dikembangkan sebuah algoritma untuk mengetahui koordinat tetangga
 | 
			
		||||
berdasarkan informasi sensor jarak sehingga hasil pencarian koordinat tersebut dapat
 | 
			
		||||
digunakan pada kendali formasi berdasarkan jarak. 
 | 
			
		||||
Pada penelitian ini akan dikembangkan sebuah algoritma untuk menemukan koordinat tetangga
 | 
			
		||||
menggunakan informasi jarak dan digunakan untuk nilai kondisi awal pada kendali formasi berdasarkan jarak.
 | 
			
		||||
Percobaan akan menggunakan model robot holonomic dengan harapan menjadi langkah awal
 | 
			
		||||
mengembangkan kendali formasi berdasarkan jarak menggunakan model robot yang lebih nyata.
 | 
			
		||||
| 
						 | 
				
			
			@ -1,7 +1,7 @@
 | 
			
		|||
 | 
			
		||||
\section{Metode}
 | 
			
		||||
 | 
			
		||||
\subsection{Kendali Robot Holonomic}
 | 
			
		||||
\subsection{Model Robot}
 | 
			
		||||
 | 
			
		||||
Berikut adalah model dari robot holonomic dalam bentuk \textit{state-space} \kutip{CORREIA20127}.
 | 
			
		||||
Dimana robot menggunakan tiga buah motor yang dihubungkan pada \textit{omniwheel} sehingga robot
 | 
			
		||||
| 
						 | 
				
			
			@ -27,6 +27,8 @@ yang diperoleh dari identifikasi secara persamaan fisika.
 | 
			
		|||
Matrix $K_r \in \mathbb{R}^{3 \times 3}$ adalah parameter \textit{friction} dari robot yang diestimasi dari
 | 
			
		||||
hasil percobaan.
 | 
			
		||||
 | 
			
		||||
\subsection{Kendali Robot Holonomic}
 | 
			
		||||
 | 
			
		||||
Kendali dari robot akan menggunakan dua mode \textit{state-feedback}.
 | 
			
		||||
\textbf{Mode satu}, bertujuan untuk mencapai kecepatan robot yang diinginkan.
 | 
			
		||||
Untuk mencapai tujuan tersebut akan menggunakan persamaan kendali sebagai berikut
 | 
			
		||||
| 
						 | 
				
			
			@ -64,7 +66,7 @@ menjadi $y_{c2}(t) = x_{c2}(t) = \begin{bmatrix}
 | 
			
		|||
  A_{c2} = \begin{bmatrix}
 | 
			
		||||
    0 & I   \\
 | 
			
		||||
    0 & A_r \\
 | 
			
		||||
  \end{bmatrix} \in \mathbb{R}^{6 \times 6}
 | 
			
		||||
  \end{bmatrix} \in \mathbb{R} ^ {6 \times 6}
 | 
			
		||||
$,
 | 
			
		||||
$B_{c2}    = \begin{bmatrix}
 | 
			
		||||
    0 \\ B_r
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -7,5 +7,5 @@
 | 
			
		|||
% required.
 | 
			
		||||
 | 
			
		||||
@Control{biblatex-control,
 | 
			
		||||
  options = {3.7:0:0:1:0:1:1:0:0:0:0:1:3:1:3:1:0:0:3:1:79:+:+:nty},
 | 
			
		||||
  options = {3.7:0:0:1:0:1:1:0:0:0:0:0:3:1:3:1:0:0:3:1:79:+:+:none},
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										474
									
								
								article.bbl
								
								
								
								
							
							
						
						
									
										474
									
								
								article.bbl
								
								
								
								
							| 
						 | 
				
			
			@ -16,60 +16,116 @@
 | 
			
		|||
  {}
 | 
			
		||||
\endgroup
 | 
			
		||||
 | 
			
		||||
\datalist[entry]{nty/global//global/global}
 | 
			
		||||
  \entry{CORREIA20127}{article}{}
 | 
			
		||||
    \name{author}{3}{}{%
 | 
			
		||||
      {{hash=CMD}{%
 | 
			
		||||
         family={Correia},
 | 
			
		||||
         familyi={C\bibinitperiod},
 | 
			
		||||
         given={Mariane\bibnamedelima Dourado},
 | 
			
		||||
         giveni={M\bibinitperiod\bibinitdelim D\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
      {{hash=GA}{%
 | 
			
		||||
         family={Gustavo},
 | 
			
		||||
         familyi={G\bibinitperiod},
 | 
			
		||||
         given={André},
 | 
			
		||||
         giveni={A\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
      {{hash=CS}{%
 | 
			
		||||
         family={Conceição},
 | 
			
		||||
         familyi={C\bibinitperiod},
 | 
			
		||||
         given={Scolari},
 | 
			
		||||
         giveni={S\bibinitperiod},
 | 
			
		||||
\datalist[entry]{none/global//global/global}
 | 
			
		||||
  \entry{Parker2003}{article}{}
 | 
			
		||||
    \name{author}{1}{}{%
 | 
			
		||||
      {{hash=PL}{%
 | 
			
		||||
         family={Parker},
 | 
			
		||||
         familyi={P\bibinitperiod},
 | 
			
		||||
         given={Lynne},
 | 
			
		||||
         giveni={L\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
    }
 | 
			
		||||
    \keyw{Models, Friction, Parameter estimation, Autonomous mobile robots}
 | 
			
		||||
    \strng{namehash}{CMDGACS1}
 | 
			
		||||
    \strng{fullhash}{CMDGACS1}
 | 
			
		||||
    \strng{namehash}{PL1}
 | 
			
		||||
    \strng{fullhash}{PL1}
 | 
			
		||||
    \field{labelnamesource}{author}
 | 
			
		||||
    \field{labeltitlesource}{title}
 | 
			
		||||
    \field{sortinit}{C}
 | 
			
		||||
    \field{sortinithash}{C}
 | 
			
		||||
    \field{abstract}{%
 | 
			
		||||
    This paper presents a model of a three-wheeled omnidirectional robot
 | 
			
		||||
  including a static friction model. Besides the modeling is presented a
 | 
			
		||||
  practical approach in order to estimate the coefficients of coulomb and
 | 
			
		||||
  viscous friction, which used sensory information about force and velocity of
 | 
			
		||||
  the robot's center of mass. The proposed model model has the voltages of the
 | 
			
		||||
  motors as inputs and the linear and angular velocities of the robot as
 | 
			
		||||
  outputs. Actual results and simulation with the estimated model are compared
 | 
			
		||||
  to demonstrate the performance of the proposed modeling.%
 | 
			
		||||
    }
 | 
			
		||||
    \verb{doi}
 | 
			
		||||
    \verb https://doi.org/10.3182/20120905-3-HR-2030.00002
 | 
			
		||||
    \verb 10.1007/BF02480877
 | 
			
		||||
    \endverb
 | 
			
		||||
    \field{issn}{1474-6670}
 | 
			
		||||
    \field{note}{10th IFAC Symposium on Robot Control}
 | 
			
		||||
    \field{number}{22}
 | 
			
		||||
    \field{pages}{7 \bibrangedash  12}
 | 
			
		||||
    \field{title}{Modeling of a Three Wheeled Omnidirectional Robot Including
 | 
			
		||||
  Friction Models}
 | 
			
		||||
    \verb{url}
 | 
			
		||||
    \verb http://www.sciencedirect.com/science/article/pii/S1474667016335807
 | 
			
		||||
    \field{pages}{1\bibrangedash 5}
 | 
			
		||||
    \field{title}{Current research in multirobot systems}
 | 
			
		||||
    \field{volume}{7}
 | 
			
		||||
    \field{journaltitle}{Artificial Life and Robotics}
 | 
			
		||||
    \field{month}{03}
 | 
			
		||||
    \field{year}{2003}
 | 
			
		||||
  \endentry
 | 
			
		||||
 | 
			
		||||
  \entry{Guanghua2013}{inproceedings}{}
 | 
			
		||||
    \name{author}{4}{}{%
 | 
			
		||||
      {{hash=GW}{%
 | 
			
		||||
         family={Guanghua},
 | 
			
		||||
         familyi={G\bibinitperiod},
 | 
			
		||||
         given={Wang},
 | 
			
		||||
         giveni={W\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
      {{hash=DL}{%
 | 
			
		||||
         family={Deyi},
 | 
			
		||||
         familyi={D\bibinitperiod},
 | 
			
		||||
         given={Li},
 | 
			
		||||
         giveni={L\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
      {{hash=WG}{%
 | 
			
		||||
         family={Wenyan},
 | 
			
		||||
         familyi={W\bibinitperiod},
 | 
			
		||||
         given={Gan},
 | 
			
		||||
         giveni={G\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
      {{hash=PJ}{%
 | 
			
		||||
         family={Peng},
 | 
			
		||||
         familyi={P\bibinitperiod},
 | 
			
		||||
         given={Jia},
 | 
			
		||||
         giveni={J\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
    }
 | 
			
		||||
    \strng{namehash}{GW+1}
 | 
			
		||||
    \strng{fullhash}{GWDLWGPJ1}
 | 
			
		||||
    \field{labelnamesource}{author}
 | 
			
		||||
    \field{labeltitlesource}{title}
 | 
			
		||||
    \verb{doi}
 | 
			
		||||
    \verb 10.1109/ISDEA.2012.316
 | 
			
		||||
    \endverb
 | 
			
		||||
    \field{volume}{45}
 | 
			
		||||
    \field{journaltitle}{IFAC Proceedings Volumes}
 | 
			
		||||
    \field{year}{2012}
 | 
			
		||||
    \field{isbn}{978-1-4673-4893-5}
 | 
			
		||||
    \field{pages}{1335\bibrangedash 1339}
 | 
			
		||||
    \field{title}{Study on Formation Control of Multi-Robot Systems}
 | 
			
		||||
    \field{month}{01}
 | 
			
		||||
    \field{year}{2013}
 | 
			
		||||
  \endentry
 | 
			
		||||
 | 
			
		||||
  \entry{6889491}{inproceedings}{}
 | 
			
		||||
    \name{author}{3}{}{%
 | 
			
		||||
      {{hash=WX}{%
 | 
			
		||||
         family={{Wang}},
 | 
			
		||||
         familyi={W\bibinitperiod},
 | 
			
		||||
         given={X.},
 | 
			
		||||
         giveni={X\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
      {{hash=YZ}{%
 | 
			
		||||
         family={{Yan}},
 | 
			
		||||
         familyi={Y\bibinitperiod},
 | 
			
		||||
         given={Z.},
 | 
			
		||||
         giveni={Z\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
      {{hash=WJ}{%
 | 
			
		||||
         family={{Wang}},
 | 
			
		||||
         familyi={W\bibinitperiod},
 | 
			
		||||
         given={J.},
 | 
			
		||||
         giveni={J\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
    }
 | 
			
		||||
    \keyw{dynamic programming;mobile robots;multi-robot
 | 
			
		||||
  systems;neurocontrollers;optimal control;predictive control;quadratic
 | 
			
		||||
  programming;recurrent neural nets;torque control;trajectory control;model
 | 
			
		||||
  predictive control approach;multirobot formation control problem;simplified
 | 
			
		||||
  dual neural network;leader-follower scheme;desired trajectory
 | 
			
		||||
  tracking;dynamic quadratic optimization problem;one-layer recurrent neural
 | 
			
		||||
  network;optimal control input;Vectors;Lead;Wheels;Neural networks;Robot
 | 
			
		||||
  kinematics;Mathematical model}
 | 
			
		||||
    \strng{namehash}{WXYZWJ1}
 | 
			
		||||
    \strng{fullhash}{WXYZWJ1}
 | 
			
		||||
    \field{labelnamesource}{author}
 | 
			
		||||
    \field{labeltitlesource}{title}
 | 
			
		||||
    \field{booktitle}{2014 International Joint Conference on Neural Networks
 | 
			
		||||
  (IJCNN)}
 | 
			
		||||
    \verb{doi}
 | 
			
		||||
    \verb 10.1109/IJCNN.2014.6889491
 | 
			
		||||
    \endverb
 | 
			
		||||
    \field{issn}{2161-4393}
 | 
			
		||||
    \field{pages}{3161\bibrangedash 3166}
 | 
			
		||||
    \field{title}{Model predictive control of multi-robot formation based on
 | 
			
		||||
  the simplified dual neural network}
 | 
			
		||||
    \field{year}{2014}
 | 
			
		||||
    \warn{\item Invalid format of field 'month'}
 | 
			
		||||
  \endentry
 | 
			
		||||
 | 
			
		||||
  \entry{ELFERIK2016117}{article}{}
 | 
			
		||||
| 
						 | 
				
			
			@ -98,8 +154,6 @@
 | 
			
		|||
    \strng{fullhash}{FSENMTBU1}
 | 
			
		||||
    \field{labelnamesource}{author}
 | 
			
		||||
    \field{labeltitlesource}{title}
 | 
			
		||||
    \field{sortinit}{F}
 | 
			
		||||
    \field{sortinithash}{F}
 | 
			
		||||
    \field{abstract}{%
 | 
			
		||||
    Cooperation between autonomous robot vehicles holds several promising
 | 
			
		||||
  advantages like robustness, adaptability, configurability, and scalability.
 | 
			
		||||
| 
						 | 
				
			
			@ -137,47 +191,102 @@
 | 
			
		|||
    \field{year}{2016}
 | 
			
		||||
  \endentry
 | 
			
		||||
 | 
			
		||||
  \entry{Guanghua2013}{inproceedings}{}
 | 
			
		||||
    \name{author}{4}{}{%
 | 
			
		||||
      {{hash=GW}{%
 | 
			
		||||
         family={Guanghua},
 | 
			
		||||
         familyi={G\bibinitperiod},
 | 
			
		||||
         given={Wang},
 | 
			
		||||
         giveni={W\bibinitperiod},
 | 
			
		||||
  \entry{YOSHIOKA20085149}{article}{}
 | 
			
		||||
    \name{author}{2}{}{%
 | 
			
		||||
      {{hash=YC}{%
 | 
			
		||||
         family={Yoshioka},
 | 
			
		||||
         familyi={Y\bibinitperiod},
 | 
			
		||||
         given={Chika},
 | 
			
		||||
         giveni={C\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
      {{hash=DL}{%
 | 
			
		||||
         family={Deyi},
 | 
			
		||||
         familyi={D\bibinitperiod},
 | 
			
		||||
         given={Li},
 | 
			
		||||
         giveni={L\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
      {{hash=WG}{%
 | 
			
		||||
         family={Wenyan},
 | 
			
		||||
         familyi={W\bibinitperiod},
 | 
			
		||||
         given={Gan},
 | 
			
		||||
         giveni={G\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
      {{hash=PJ}{%
 | 
			
		||||
         family={Peng},
 | 
			
		||||
         familyi={P\bibinitperiod},
 | 
			
		||||
         given={Jia},
 | 
			
		||||
         giveni={J\bibinitperiod},
 | 
			
		||||
      {{hash=NT}{%
 | 
			
		||||
         family={Namerikawa},
 | 
			
		||||
         familyi={N\bibinitperiod},
 | 
			
		||||
         given={Toru},
 | 
			
		||||
         giveni={T\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
    }
 | 
			
		||||
    \strng{namehash}{GW+1}
 | 
			
		||||
    \strng{fullhash}{GWDLWGPJ1}
 | 
			
		||||
    \strng{namehash}{YCNT1}
 | 
			
		||||
    \strng{fullhash}{YCNT1}
 | 
			
		||||
    \field{labelnamesource}{author}
 | 
			
		||||
    \field{labeltitlesource}{title}
 | 
			
		||||
    \field{sortinit}{G}
 | 
			
		||||
    \field{sortinithash}{G}
 | 
			
		||||
    \field{abstract}{%
 | 
			
		||||
    This paper deals with formation control strategies based on Virtual
 | 
			
		||||
  Structure (VS) for multi-vehicle systems. We propose several control laws for
 | 
			
		||||
  networked multi-nonholonomic vehicle systems in order to achieve VS
 | 
			
		||||
  consensus, VS Flocking and VS Flocking with collision-avoidance. First,
 | 
			
		||||
  Virtual Vehicle for the feedback linearization is considered, and we propose
 | 
			
		||||
  VS consensus and Flocking control laws based on a virtual structure and
 | 
			
		||||
  consensus algorithms. Then, VS Flocking control law considering collision
 | 
			
		||||
  avoidance is proposed and its asymptotical stability is proven. Finally,
 | 
			
		||||
  simulation and experimental results show effectiveness of our proposed
 | 
			
		||||
  approaches.%
 | 
			
		||||
    }
 | 
			
		||||
    \verb{doi}
 | 
			
		||||
    \verb 10.1109/ISDEA.2012.316
 | 
			
		||||
    \verb https://doi.org/10.3182/20080706-5-KR-1001.00865
 | 
			
		||||
    \endverb
 | 
			
		||||
    \field{isbn}{978-1-4673-4893-5}
 | 
			
		||||
    \field{pages}{1335\bibrangedash 1339}
 | 
			
		||||
    \field{title}{Study on Formation Control of Multi-Robot Systems}
 | 
			
		||||
    \field{month}{01}
 | 
			
		||||
    \field{year}{2013}
 | 
			
		||||
    \field{issn}{1474-6670}
 | 
			
		||||
    \field{note}{17th IFAC World Congress}
 | 
			
		||||
    \field{number}{2}
 | 
			
		||||
    \field{pages}{5149 \bibrangedash  5154}
 | 
			
		||||
    \field{title}{Formation Control of Nonholonomic Multi-Vehicle Systems based
 | 
			
		||||
  on Virtual Structure}
 | 
			
		||||
    \verb{url}
 | 
			
		||||
    \verb http://www.sciencedirect.com/science/article/pii/S1474667016397609
 | 
			
		||||
    \endverb
 | 
			
		||||
    \field{volume}{41}
 | 
			
		||||
    \field{journaltitle}{IFAC Proceedings Volumes}
 | 
			
		||||
    \field{year}{2008}
 | 
			
		||||
  \endentry
 | 
			
		||||
 | 
			
		||||
  \entry{OH2015424}{article}{}
 | 
			
		||||
    \name{author}{3}{}{%
 | 
			
		||||
      {{hash=OKK}{%
 | 
			
		||||
         family={Oh},
 | 
			
		||||
         familyi={O\bibinitperiod},
 | 
			
		||||
         given={Kwang-Kyo},
 | 
			
		||||
         giveni={K\bibinithyphendelim K\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
      {{hash=PMC}{%
 | 
			
		||||
         family={Park},
 | 
			
		||||
         familyi={P\bibinitperiod},
 | 
			
		||||
         given={Myoung-Chul},
 | 
			
		||||
         giveni={M\bibinithyphendelim C\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
      {{hash=AHS}{%
 | 
			
		||||
         family={Ahn},
 | 
			
		||||
         familyi={A\bibinitperiod},
 | 
			
		||||
         given={Hyo-Sung},
 | 
			
		||||
         giveni={H\bibinithyphendelim S\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
    }
 | 
			
		||||
    \keyw{Formation control, Position-based control, Displacement-based
 | 
			
		||||
  control, Distance-based control}
 | 
			
		||||
    \strng{namehash}{OKKPMCAHS1}
 | 
			
		||||
    \strng{fullhash}{OKKPMCAHS1}
 | 
			
		||||
    \field{labelnamesource}{author}
 | 
			
		||||
    \field{labeltitlesource}{title}
 | 
			
		||||
    \field{abstract}{%
 | 
			
		||||
    We present a survey of formation control of multi-agent systems. Focusing
 | 
			
		||||
  on the sensing capability and the interaction topology of agents, we
 | 
			
		||||
  categorize the existing results into position-, displacement-, and
 | 
			
		||||
  distance-based control. We then summarize problem formulations, discuss
 | 
			
		||||
  distinctions, and review recent results of the formation control schemes.
 | 
			
		||||
  Further we review some other results that do not fit into the
 | 
			
		||||
  categorization.%
 | 
			
		||||
    }
 | 
			
		||||
    \verb{doi}
 | 
			
		||||
    \verb https://doi.org/10.1016/j.automatica.2014.10.022
 | 
			
		||||
    \endverb
 | 
			
		||||
    \field{issn}{0005-1098}
 | 
			
		||||
    \field{pages}{424 \bibrangedash  440}
 | 
			
		||||
    \field{title}{A survey of multi-agent formation control}
 | 
			
		||||
    \verb{url}
 | 
			
		||||
    \verb http://www.sciencedirect.com/science/article/pii/S0005109814004038
 | 
			
		||||
    \endverb
 | 
			
		||||
    \field{volume}{53}
 | 
			
		||||
    \field{journaltitle}{Automatica}
 | 
			
		||||
    \field{year}{2015}
 | 
			
		||||
  \endentry
 | 
			
		||||
 | 
			
		||||
  \entry{Oh2014}{article}{}
 | 
			
		||||
| 
						 | 
				
			
			@ -201,8 +310,6 @@
 | 
			
		|||
    \strng{fullhash}{OKKAHS1}
 | 
			
		||||
    \field{labelnamesource}{author}
 | 
			
		||||
    \field{labeltitlesource}{title}
 | 
			
		||||
    \field{sortinit}{O}
 | 
			
		||||
    \field{sortinithash}{O}
 | 
			
		||||
    \field{abstract}{%
 | 
			
		||||
    SUMMARYWe study the local asymptotic stability of undirected formations of
 | 
			
		||||
  single-integrator and double-integrator modeled agents based on interagent
 | 
			
		||||
| 
						 | 
				
			
			@ -235,84 +342,6 @@
 | 
			
		|||
    \field{year}{2014}
 | 
			
		||||
  \endentry
 | 
			
		||||
 | 
			
		||||
  \entry{OH2015424}{article}{}
 | 
			
		||||
    \name{author}{3}{}{%
 | 
			
		||||
      {{hash=OKK}{%
 | 
			
		||||
         family={Oh},
 | 
			
		||||
         familyi={O\bibinitperiod},
 | 
			
		||||
         given={Kwang-Kyo},
 | 
			
		||||
         giveni={K\bibinithyphendelim K\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
      {{hash=PMC}{%
 | 
			
		||||
         family={Park},
 | 
			
		||||
         familyi={P\bibinitperiod},
 | 
			
		||||
         given={Myoung-Chul},
 | 
			
		||||
         giveni={M\bibinithyphendelim C\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
      {{hash=AHS}{%
 | 
			
		||||
         family={Ahn},
 | 
			
		||||
         familyi={A\bibinitperiod},
 | 
			
		||||
         given={Hyo-Sung},
 | 
			
		||||
         giveni={H\bibinithyphendelim S\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
    }
 | 
			
		||||
    \keyw{Formation control, Position-based control, Displacement-based
 | 
			
		||||
  control, Distance-based control}
 | 
			
		||||
    \strng{namehash}{OKKPMCAHS1}
 | 
			
		||||
    \strng{fullhash}{OKKPMCAHS1}
 | 
			
		||||
    \field{labelnamesource}{author}
 | 
			
		||||
    \field{labeltitlesource}{title}
 | 
			
		||||
    \field{sortinit}{O}
 | 
			
		||||
    \field{sortinithash}{O}
 | 
			
		||||
    \field{abstract}{%
 | 
			
		||||
    We present a survey of formation control of multi-agent systems. Focusing
 | 
			
		||||
  on the sensing capability and the interaction topology of agents, we
 | 
			
		||||
  categorize the existing results into position-, displacement-, and
 | 
			
		||||
  distance-based control. We then summarize problem formulations, discuss
 | 
			
		||||
  distinctions, and review recent results of the formation control schemes.
 | 
			
		||||
  Further we review some other results that do not fit into the
 | 
			
		||||
  categorization.%
 | 
			
		||||
    }
 | 
			
		||||
    \verb{doi}
 | 
			
		||||
    \verb https://doi.org/10.1016/j.automatica.2014.10.022
 | 
			
		||||
    \endverb
 | 
			
		||||
    \field{issn}{0005-1098}
 | 
			
		||||
    \field{pages}{424 \bibrangedash  440}
 | 
			
		||||
    \field{title}{A survey of multi-agent formation control}
 | 
			
		||||
    \verb{url}
 | 
			
		||||
    \verb http://www.sciencedirect.com/science/article/pii/S0005109814004038
 | 
			
		||||
    \endverb
 | 
			
		||||
    \field{volume}{53}
 | 
			
		||||
    \field{journaltitle}{Automatica}
 | 
			
		||||
    \field{year}{2015}
 | 
			
		||||
  \endentry
 | 
			
		||||
 | 
			
		||||
  \entry{Parker2003}{article}{}
 | 
			
		||||
    \name{author}{1}{}{%
 | 
			
		||||
      {{hash=PL}{%
 | 
			
		||||
         family={Parker},
 | 
			
		||||
         familyi={P\bibinitperiod},
 | 
			
		||||
         given={Lynne},
 | 
			
		||||
         giveni={L\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
    }
 | 
			
		||||
    \strng{namehash}{PL1}
 | 
			
		||||
    \strng{fullhash}{PL1}
 | 
			
		||||
    \field{labelnamesource}{author}
 | 
			
		||||
    \field{labeltitlesource}{title}
 | 
			
		||||
    \field{sortinit}{P}
 | 
			
		||||
    \field{sortinithash}{P}
 | 
			
		||||
    \verb{doi}
 | 
			
		||||
    \verb 10.1007/BF02480877
 | 
			
		||||
    \endverb
 | 
			
		||||
    \field{pages}{1\bibrangedash 5}
 | 
			
		||||
    \field{title}{Current research in multirobot systems}
 | 
			
		||||
    \field{volume}{7}
 | 
			
		||||
    \field{journaltitle}{Artificial Life and Robotics}
 | 
			
		||||
    \field{month}{03}
 | 
			
		||||
    \field{year}{2003}
 | 
			
		||||
  \endentry
 | 
			
		||||
 | 
			
		||||
  \entry{Rozenheck2015}{inproceedings}{}
 | 
			
		||||
    \name{author}{3}{}{%
 | 
			
		||||
      {{hash=RO}{%
 | 
			
		||||
| 
						 | 
				
			
			@ -345,8 +374,6 @@
 | 
			
		|||
    \strng{fullhash}{ROZSZD1}
 | 
			
		||||
    \field{labelnamesource}{author}
 | 
			
		||||
    \field{labeltitlesource}{title}
 | 
			
		||||
    \field{sortinit}{R}
 | 
			
		||||
    \field{sortinithash}{R}
 | 
			
		||||
    \field{booktitle}{2015 European Control Conference (ECC)}
 | 
			
		||||
    \verb{doi}
 | 
			
		||||
    \verb 10.1109/ECC.2015.7330781
 | 
			
		||||
| 
						 | 
				
			
			@ -358,102 +385,57 @@
 | 
			
		|||
    \warn{\item Invalid format of field 'month'}
 | 
			
		||||
  \endentry
 | 
			
		||||
 | 
			
		||||
  \entry{6889491}{inproceedings}{}
 | 
			
		||||
  \entry{CORREIA20127}{article}{}
 | 
			
		||||
    \name{author}{3}{}{%
 | 
			
		||||
      {{hash=WX}{%
 | 
			
		||||
         family={{Wang}},
 | 
			
		||||
         familyi={W\bibinitperiod},
 | 
			
		||||
         given={X.},
 | 
			
		||||
         giveni={X\bibinitperiod},
 | 
			
		||||
      {{hash=CMD}{%
 | 
			
		||||
         family={Correia},
 | 
			
		||||
         familyi={C\bibinitperiod},
 | 
			
		||||
         given={Mariane\bibnamedelima Dourado},
 | 
			
		||||
         giveni={M\bibinitperiod\bibinitdelim D\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
      {{hash=YZ}{%
 | 
			
		||||
         family={{Yan}},
 | 
			
		||||
         familyi={Y\bibinitperiod},
 | 
			
		||||
         given={Z.},
 | 
			
		||||
         giveni={Z\bibinitperiod},
 | 
			
		||||
      {{hash=GA}{%
 | 
			
		||||
         family={Gustavo},
 | 
			
		||||
         familyi={G\bibinitperiod},
 | 
			
		||||
         given={André},
 | 
			
		||||
         giveni={A\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
      {{hash=WJ}{%
 | 
			
		||||
         family={{Wang}},
 | 
			
		||||
         familyi={W\bibinitperiod},
 | 
			
		||||
         given={J.},
 | 
			
		||||
         giveni={J\bibinitperiod},
 | 
			
		||||
      {{hash=CS}{%
 | 
			
		||||
         family={Conceição},
 | 
			
		||||
         familyi={C\bibinitperiod},
 | 
			
		||||
         given={Scolari},
 | 
			
		||||
         giveni={S\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
    }
 | 
			
		||||
    \keyw{dynamic programming;mobile robots;multi-robot
 | 
			
		||||
  systems;neurocontrollers;optimal control;predictive control;quadratic
 | 
			
		||||
  programming;recurrent neural nets;torque control;trajectory control;model
 | 
			
		||||
  predictive control approach;multirobot formation control problem;simplified
 | 
			
		||||
  dual neural network;leader-follower scheme;desired trajectory
 | 
			
		||||
  tracking;dynamic quadratic optimization problem;one-layer recurrent neural
 | 
			
		||||
  network;optimal control input;Vectors;Lead;Wheels;Neural networks;Robot
 | 
			
		||||
  kinematics;Mathematical model}
 | 
			
		||||
    \strng{namehash}{WXYZWJ1}
 | 
			
		||||
    \strng{fullhash}{WXYZWJ1}
 | 
			
		||||
    \keyw{Models, Friction, Parameter estimation, Autonomous mobile robots}
 | 
			
		||||
    \strng{namehash}{CMDGACS1}
 | 
			
		||||
    \strng{fullhash}{CMDGACS1}
 | 
			
		||||
    \field{labelnamesource}{author}
 | 
			
		||||
    \field{labeltitlesource}{title}
 | 
			
		||||
    \field{sortinit}{W}
 | 
			
		||||
    \field{sortinithash}{W}
 | 
			
		||||
    \field{booktitle}{2014 International Joint Conference on Neural Networks
 | 
			
		||||
  (IJCNN)}
 | 
			
		||||
    \verb{doi}
 | 
			
		||||
    \verb 10.1109/IJCNN.2014.6889491
 | 
			
		||||
    \endverb
 | 
			
		||||
    \field{issn}{2161-4393}
 | 
			
		||||
    \field{pages}{3161\bibrangedash 3166}
 | 
			
		||||
    \field{title}{Model predictive control of multi-robot formation based on
 | 
			
		||||
  the simplified dual neural network}
 | 
			
		||||
    \field{year}{2014}
 | 
			
		||||
    \warn{\item Invalid format of field 'month'}
 | 
			
		||||
  \endentry
 | 
			
		||||
 | 
			
		||||
  \entry{YOSHIOKA20085149}{article}{}
 | 
			
		||||
    \name{author}{2}{}{%
 | 
			
		||||
      {{hash=YC}{%
 | 
			
		||||
         family={Yoshioka},
 | 
			
		||||
         familyi={Y\bibinitperiod},
 | 
			
		||||
         given={Chika},
 | 
			
		||||
         giveni={C\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
      {{hash=NT}{%
 | 
			
		||||
         family={Namerikawa},
 | 
			
		||||
         familyi={N\bibinitperiod},
 | 
			
		||||
         given={Toru},
 | 
			
		||||
         giveni={T\bibinitperiod},
 | 
			
		||||
      }}%
 | 
			
		||||
    }
 | 
			
		||||
    \strng{namehash}{YCNT1}
 | 
			
		||||
    \strng{fullhash}{YCNT1}
 | 
			
		||||
    \field{labelnamesource}{author}
 | 
			
		||||
    \field{labeltitlesource}{title}
 | 
			
		||||
    \field{sortinit}{Y}
 | 
			
		||||
    \field{sortinithash}{Y}
 | 
			
		||||
    \field{abstract}{%
 | 
			
		||||
    This paper deals with formation control strategies based on Virtual
 | 
			
		||||
  Structure (VS) for multi-vehicle systems. We propose several control laws for
 | 
			
		||||
  networked multi-nonholonomic vehicle systems in order to achieve VS
 | 
			
		||||
  consensus, VS Flocking and VS Flocking with collision-avoidance. First,
 | 
			
		||||
  Virtual Vehicle for the feedback linearization is considered, and we propose
 | 
			
		||||
  VS consensus and Flocking control laws based on a virtual structure and
 | 
			
		||||
  consensus algorithms. Then, VS Flocking control law considering collision
 | 
			
		||||
  avoidance is proposed and its asymptotical stability is proven. Finally,
 | 
			
		||||
  simulation and experimental results show effectiveness of our proposed
 | 
			
		||||
  approaches.%
 | 
			
		||||
    This paper presents a model of a three-wheeled omnidirectional robot
 | 
			
		||||
  including a static friction model. Besides the modeling is presented a
 | 
			
		||||
  practical approach in order to estimate the coefficients of coulomb and
 | 
			
		||||
  viscous friction, which used sensory information about force and velocity of
 | 
			
		||||
  the robot's center of mass. The proposed model model has the voltages of the
 | 
			
		||||
  motors as inputs and the linear and angular velocities of the robot as
 | 
			
		||||
  outputs. Actual results and simulation with the estimated model are compared
 | 
			
		||||
  to demonstrate the performance of the proposed modeling.%
 | 
			
		||||
    }
 | 
			
		||||
    \verb{doi}
 | 
			
		||||
    \verb https://doi.org/10.3182/20080706-5-KR-1001.00865
 | 
			
		||||
    \verb https://doi.org/10.3182/20120905-3-HR-2030.00002
 | 
			
		||||
    \endverb
 | 
			
		||||
    \field{issn}{1474-6670}
 | 
			
		||||
    \field{note}{17th IFAC World Congress}
 | 
			
		||||
    \field{number}{2}
 | 
			
		||||
    \field{pages}{5149 \bibrangedash  5154}
 | 
			
		||||
    \field{title}{Formation Control of Nonholonomic Multi-Vehicle Systems based
 | 
			
		||||
  on Virtual Structure}
 | 
			
		||||
    \field{note}{10th IFAC Symposium on Robot Control}
 | 
			
		||||
    \field{number}{22}
 | 
			
		||||
    \field{pages}{7 \bibrangedash  12}
 | 
			
		||||
    \field{title}{Modeling of a Three Wheeled Omnidirectional Robot Including
 | 
			
		||||
  Friction Models}
 | 
			
		||||
    \verb{url}
 | 
			
		||||
    \verb http://www.sciencedirect.com/science/article/pii/S1474667016397609
 | 
			
		||||
    \verb http://www.sciencedirect.com/science/article/pii/S1474667016335807
 | 
			
		||||
    \endverb
 | 
			
		||||
    \field{volume}{41}
 | 
			
		||||
    \field{volume}{45}
 | 
			
		||||
    \field{journaltitle}{IFAC Proceedings Volumes}
 | 
			
		||||
    \field{year}{2008}
 | 
			
		||||
    \field{year}{2012}
 | 
			
		||||
  \endentry
 | 
			
		||||
\enddatalist
 | 
			
		||||
\endinput
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										
											BIN
										
									
								
								article.pdf
								
								
								
								
							
							
						
						
									
										
											BIN
										
									
								
								article.pdf
								
								
								
								
							
										
											Binary file not shown.
										
									
								
							| 
						 | 
				
			
			@ -11,10 +11,10 @@
 | 
			
		|||
\Var{\Kota} {Malang}
 | 
			
		||||
 | 
			
		||||
% Judul laporan. 
 | 
			
		||||
\var{\judul}{Kendali Formasi Berdasarkan Jarak Menggunakan Algoritma Cosinus Pada Mobile Robot}
 | 
			
		||||
\var{\judul}{Kendali Formasi Mobile Robot Berdasarkan Jarak Menggunakan Algoritma Cosinus}
 | 
			
		||||
% 
 | 
			
		||||
% Tulis kembali judul laporan, kali ini akan diubah menjadi huruf kapital
 | 
			
		||||
\Var{\Judul}{Kendali Formasi Berdasarkan Jarak Menggunakan Algoritma Cosinus Pada Mobile Robot}
 | 
			
		||||
\Var{\Judul}{Kendali Formasi Mobile Robot Berdasarkan Jarak Menggunakan Algoritma Cosinus}
 | 
			
		||||
% 
 | 
			
		||||
% Tulis kembali judul laporan namun dengan bahasa Ingris
 | 
			
		||||
\var{\judulInggris}{Formation Control Distance-Based Using Cosinus Algoritm For Multi Mobile-Robot}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -220,7 +220,7 @@
 | 
			
		|||
%
 | 
			
		||||
\@ifclassloaded{article}
 | 
			
		||||
{
 | 
			
		||||
  \usepackage[backend=bibtex,autocite=inline]{biblatex}
 | 
			
		||||
  \usepackage[backend=bibtex,autocite=inline,sorting=none]{biblatex}
 | 
			
		||||
}
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue