91 lines
3.0 KiB
Plaintext
91 lines
3.0 KiB
Plaintext
% $ biblatex auxiliary file $
|
|
% $ biblatex bbl format version 3.1 $
|
|
% Do not modify the above lines!
|
|
%
|
|
% This is an auxiliary file used by the 'biblatex' package.
|
|
% This file may safely be deleted. It will be recreated as
|
|
% required.
|
|
%
|
|
\begingroup
|
|
\makeatletter
|
|
\@ifundefined{ver@biblatex.sty}
|
|
{\@latex@error
|
|
{Missing 'biblatex' package}
|
|
{The bibliography requires the 'biblatex' package.}
|
|
\aftergroup\endinput}
|
|
{}
|
|
\endgroup
|
|
|
|
\datalist[entry]{nyt/global//global/global}
|
|
\entry{Cao2007}{inproceedings}{}
|
|
\name{author}{5}{}{%
|
|
{{hash=CM}{%
|
|
family={{Cao}},
|
|
familyi={C\bibinitperiod},
|
|
given={M.},
|
|
giveni={M\bibinitperiod},
|
|
}}%
|
|
{{hash=MAS}{%
|
|
family={{Morse}},
|
|
familyi={M\bibinitperiod},
|
|
given={A.\bibnamedelima S.},
|
|
giveni={A\bibinitperiod\bibinitdelim S\bibinitperiod},
|
|
}}%
|
|
{{hash=YC}{%
|
|
family={{Yu}},
|
|
familyi={Y\bibinitperiod},
|
|
given={C.},
|
|
giveni={C\bibinitperiod},
|
|
}}%
|
|
{{hash=ABDO}{%
|
|
family={{Anderson}},
|
|
familyi={A\bibinitperiod},
|
|
given={B.\bibnamedelima D.\bibnamedelima O.},
|
|
giveni={B\bibinitperiod\bibinitdelim D\bibinitperiod\bibinitdelim
|
|
O\bibinitperiod},
|
|
}}%
|
|
{{hash=DS}{%
|
|
family={{Dasguvta}},
|
|
familyi={D\bibinitperiod},
|
|
given={S.},
|
|
giveni={S\bibinitperiod},
|
|
}}%
|
|
}
|
|
\keyw{distributed control;mobile robots;multi-robot systems;spatial
|
|
variables control;triangular formation;mobile autonomous agents;collinear
|
|
formations;distributed control law;Autonomous agents;USA Councils;Distributed
|
|
control;H infinity control;Differential equations;Information
|
|
technology;Art;Australia Council}
|
|
\strng{namehash}{CM+1}
|
|
\strng{fullhash}{CMMASYCABDODS1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{labelyear}{2007}
|
|
\field{labeldatesource}{}
|
|
\field{sortinit}{C}
|
|
\field{sortinithash}{C}
|
|
\field{abstract}{%
|
|
This paper proposes a distributed control law for maintaining a triangular
|
|
formation in the plane consisting of three mobile autonomous agents. It is
|
|
shown that the control law can cause any initially non-collinear,
|
|
positively-oriented {resp. negatively-oriented} triangular formation to
|
|
converge exponentially fast to a desired positively-oriented {resp.
|
|
negatively- oriented} triangular formation. It is also shown that there is a
|
|
thin set of initially collinear formations which remain collinear and may
|
|
drift off to infinity as t rarr infin. These findings complement and extend
|
|
earlier findings cited below.%
|
|
}
|
|
\field{booktitle}{2007 46th IEEE Conference on Decision and Control}
|
|
\verb{doi}
|
|
\verb 10.1109/CDC.2007.4434757
|
|
\endverb
|
|
\field{issn}{0191-2216}
|
|
\field{pages}{3603\bibrangedash 3608}
|
|
\field{title}{Controlling a triangular formation of mobile autonomous
|
|
agents}
|
|
\field{year}{2007}
|
|
\warn{\item Invalid format of field 'month'}
|
|
\endentry
|
|
\enddatalist
|
|
\endinput
|