-p-formation-control/article.bbl

91 lines
3.0 KiB
Plaintext

% $ biblatex auxiliary file $
% $ biblatex bbl format version 3.1 $
% Do not modify the above lines!
%
% This is an auxiliary file used by the 'biblatex' package.
% This file may safely be deleted. It will be recreated as
% required.
%
\begingroup
\makeatletter
\@ifundefined{ver@biblatex.sty}
{\@latex@error
{Missing 'biblatex' package}
{The bibliography requires the 'biblatex' package.}
\aftergroup\endinput}
{}
\endgroup
\datalist[entry]{nyt/global//global/global}
\entry{Cao2007}{inproceedings}{}
\name{author}{5}{}{%
{{hash=CM}{%
family={{Cao}},
familyi={C\bibinitperiod},
given={M.},
giveni={M\bibinitperiod},
}}%
{{hash=MAS}{%
family={{Morse}},
familyi={M\bibinitperiod},
given={A.\bibnamedelima S.},
giveni={A\bibinitperiod\bibinitdelim S\bibinitperiod},
}}%
{{hash=YC}{%
family={{Yu}},
familyi={Y\bibinitperiod},
given={C.},
giveni={C\bibinitperiod},
}}%
{{hash=ABDO}{%
family={{Anderson}},
familyi={A\bibinitperiod},
given={B.\bibnamedelima D.\bibnamedelima O.},
giveni={B\bibinitperiod\bibinitdelim D\bibinitperiod\bibinitdelim
O\bibinitperiod},
}}%
{{hash=DS}{%
family={{Dasguvta}},
familyi={D\bibinitperiod},
given={S.},
giveni={S\bibinitperiod},
}}%
}
\keyw{distributed control;mobile robots;multi-robot systems;spatial
variables control;triangular formation;mobile autonomous agents;collinear
formations;distributed control law;Autonomous agents;USA Councils;Distributed
control;H infinity control;Differential equations;Information
technology;Art;Australia Council}
\strng{namehash}{CM+1}
\strng{fullhash}{CMMASYCABDODS1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{labelyear}{2007}
\field{labeldatesource}{}
\field{sortinit}{C}
\field{sortinithash}{C}
\field{abstract}{%
This paper proposes a distributed control law for maintaining a triangular
formation in the plane consisting of three mobile autonomous agents. It is
shown that the control law can cause any initially non-collinear,
positively-oriented {resp. negatively-oriented} triangular formation to
converge exponentially fast to a desired positively-oriented {resp.
negatively- oriented} triangular formation. It is also shown that there is a
thin set of initially collinear formations which remain collinear and may
drift off to infinity as t rarr infin. These findings complement and extend
earlier findings cited below.%
}
\field{booktitle}{2007 46th IEEE Conference on Decision and Control}
\verb{doi}
\verb 10.1109/CDC.2007.4434757
\endverb
\field{issn}{0191-2216}
\field{pages}{3603\bibrangedash 3608}
\field{title}{Controlling a triangular formation of mobile autonomous
agents}
\field{year}{2007}
\warn{\item Invalid format of field 'month'}
\endentry
\enddatalist
\endinput