Electrohydraulics

Workbook Basic Level

Authorised applications and liability

The Learning System for Automation and Communication has been developed and prepared exclusively for training in the field of automation and communication. The training organization and / or trainee shall ensure that the safety precautions described in the accompanying Technical documentation are fully observed.

Festo Didactic hereby excludes any liability for injury to trainees, to the training organization and / or to third parties occurring as a result of the use or application of the station outside of a pure training situation, unless caused by premeditation or gross negligence on the part of Festo Didactic.

Order no.:	094470
Description:	TEACHW. E-HYDR.
Designation:	D.S601-C-SIBU-GB
Edition:	11/1998
Layout:	10.11.1998, OCKER Ingenieurbüro
Graphics:	OCKER Ingenieurbüro
Author:	D. Merkle, H. Werner

© Copyright by Festo Didactic GmbH & Co., D-73770 Denkendorf 1998

The copying, distribution and utilization of this document as well as the communication of its contents to others without expressed authorization is prohibited. Offenders will be held liable for the payment of damages. All rights reserved, in particular the right to carry out patent, utility model or ornamental design registrations.

Parts of this training documentation may be duplicated, solely for training purposes, by persons authorised in this sense.

Preface

Festo Didactic's Learning System for Automation and Communications is designed to meet a number of different training and vocational requirements. The Training Packages are structured accordingly:

- Basic Packages provide fundamental knowledge which is not limited to a specific technology.
- Technology Packages deal with the important areas of open-loop and closed-loop control technology.
- Function Packages explain the basic functions of automation systems.
- Application Packages provide basic and further training closely oriented to everyday industrial practice.

Technology Packages deal with the technologies of pneumatics, electropneumatics, programmable logic controllers, automation with PCs, hydraulics, electrohydraulics, proportional hydraulics and application technology (handling).

Fig. 1 Example of Hydraulics 2000: Mobile laboratory trolley The modular structure of the Learning System permits applications to be assembled which go beyond the scope of the individual packages. It is possible, for example, to use PLCs to control pneumatic, hydraulic and electrical actuators.

All training packages have an identical structure:

- Hardware
- Courseware
- Software
- Courses

The hardware consists of industrial components and installations, adapted for didactic purposes.

The courseware is matched methodologically and didactically to the training hardware. The courseware comprises:

- Textbooks (with exercises and examples)
- Workbooks (with practical exercises, explanatory notes, solutions and data sheets)
- OHP transparencies, electronic transparencies for PCs and videos (to bring teaching to life)

Teaching and learning media are available in several languages. They have been designed for use in classroom teaching but can also be used for self-study purposes.

In the software field, CAD programs, computer-based training programs and programming software for programmable logic controllers are available.

Festo Didactic's range of products for basic and further training is completed by a comprehensive selection of courses matched to the contents of the technology packages.

Latest information about the technology package TP601.

New in Hydraulic 2000:

- Industrial components on the profile plate.
- Exercises with exercise sheets and solutions, leading questions.
- Fostering of key qualifications: Technical competence, personal competence and social competence form professional competence.
- Training of team skills, willingness to co-operate, willingness to learn, independence and organisational skills.

Aim – Professional competence

Content

Part A	Course	Exercises
Part B	Fundamentals	Reference to the text book
Part C	Solutions	Function diagrams, circuits, descriptions of solutions and quipment lists
Part D	Appendix	Storage tray, mounting technology and datasheets

Table of contents

Introduction	11
Notes on safety	13
Notes on operation	14
Technical notes	15
Training contents	21
Training aims/exercise table (Table 1)	22
Equipment set for Basic Level TP 601	23
Equipment set for Advanced Level TP 602	26
List of additional components for TP600	27
Component/exercise table (Table 2)	28
Methodological structure of exercises	29

Part A – Course

Simple control circuits without limit switches

Exercise	1:	Sorting device Double-acting cylinder, directly actuated, manually	A-3
Exercise	2:	Component selection on conveyor belt Double-acting cylinder, indirectly actuated, manually	A-13
Exercise	3:	Lifting station Single-acting cylinder, indirectly actuated, manually	A-23
Exercise	4:	Bending device Double-acting cylinder, latching	A-29
Exercise	5:	Press-fitting device Double-acting cylinder, latching, return stroke using pressure switch	A-33

Exercise	6:	Stamping machine Double-acting cylinder, differential circuit	A-39
Exercise	7:	Door control Double-acting cylinder, interlock, INCHING operation	A-43
Control ci	rcu	lits with limit switches	
Exercise	8:	Machining unit Differential circuit return stroke using limit switch	A-49
Exercise	9:	Feed for drilling machine Rapid-traverse feed circuit, speeds controlled by limit switch	A-53
Exercise 1	0:	Press Pressure control circuit with limit switch and pressure switch	A-59
Exercise 1	1:	Feed device Pressureless pump bypass with limit switch	A-63
Control ci	rcu	its with two actuators	
Exercise 12	2:	Assembly device Pressure-dependent sequence control with cylinder and hydraulic motor	A-69
Exercise 1	3:	Lifting device for packages Position-dependent sequence control with two cylinders	A-75

Part B – Fundamentals

Teil C – Solutions

Solution	1:	Sorting device	C-3
Solution	2:	Component selection on conveyor belt	C-7
Solution	3:	Lifting station	C-11
Solution	4:	Bending device	C-15
Solution	5:	Press-fitting device	C-19
Solution	6:	Stamping machine	C-23
Solution	7:	Door control	C-27
Solution	8:	Machining unit	C-33
Solution	9:	Feed for drilling machine	C-39
Solution	10:	Press	C-45
Solution	11:	Feed device	C-49
Solution	12:	Assembly device	C-55
Solution	13:	Lifting device for packages	C-61

Part D – Appendix

Storage tray	D-2
Mounting systems	D-3
Sub-base	D-5
Coupling system	D-6
Data sheets	

Introduction

This workbook forms part of Festo Didactic's Learning System for Automation and Communications. The Training Package TP 600 is designed to provide an introduction to the fundamentals of electrohydraulic control technology. This package comprises a basic level and an advanced level. The basic level package TP 601 teaches basic knowledge of electrohydraulic control technology. The equipment sets TP 601 and TP 602 (for the advanced level) provide the student with the key qualification "Technical competence".

The hydraulic components have been designed to provide the following:

- Easy handling
- Secure mounting
- Environmentally-friendly coupling system
- Compact component dimensions
- Authentic measuring methods

You will require the following for the practical execution of the exercises:

- A Festo Didactic profile plate or a laboratory trolley
- An equipment set TP 601 (cylinders, valves, relay plate, ...)
- A hydraulic power pack
- A number of hydraulic hose lines
- An electrical power supply unit
- A set of electrical cables

The Training Package TP 601 specifies fundamental training contents. These help develop both technical and methodological competence in electrohydraulics:

- Physical interrelationships in electrical engineering and hydraulics
- Drafting, assembly and understanding of basic electrohydraulic circuits
- Comparison of the use of various valves and other components
- Development of alternative solutions

The technical requirements for safe operation of the components are as follows:

- A hydraulic power pack to provide an operating pressure between 0.5 and 6 Mpa (5 to 60 bar) and a flow rate of 2 l/min.
- An electrical power supply for the above of 230 V AC, 50 Hz, with a 10 A fuse.
- A short-circuit-proof electrical power supply for the electrical components with an output of 24 V DC and a 3 A fuse.
- A profile plate to mount the components The profile plate (1100 x 700 mm) has 14 parallel T-grooves at intervals of 50 mm.

This workbook has been developed for use in the "Dual system" of vocational training. It is, however, equally suitable for use in providing a practical introduction to electrohydraulics for students at universities and technical colleges. The modular design of the hardware allows theoretical questions to be dealt with experimentally in a simple and efficient form.

The theoretical background to facilitate understanding of this workbook is provided in the textbook

Learning System for Automation and Communications

Electrohydraulics Basic Level

Festo Didactic also offers the following further training materials for hydraulics:

- Sets of OHP transparencies and electronic transparencies for PCs
- Linear videos and interactive videos (video discs)
- Autosketch CAD software and symbol library
- Hydraulics simulation program for planning, simulation and visualisation (in course of preparation)
- Sets of magnetic symbols and symbols for OHPs, hydraulic slide rule
- Transparent models for OHPs, with special hydraulic power pack
- Equipment sets: BIBB, hand-lever hydraulics, proportional hydraulics, closed-loop hydraulics, measurement kit in case

Please see our special brochures for a detailed description of further training materials.

Notes on safety

Observe the following in the interests of your own safety:

- Caution! Cylinders may move unexpectedly when the hydraulic power pack is switched on.
- Do not exceed the maximum permissible hydraulic operating pressure. See the relevant data sheets.
- Do not operate electrical limit switches directly by hand when carrying out fault-finding. Use a tool for this.
- Use only an extra-low voltage of 24 to operate the components.
- Observe all general safety instructions.

Notes on operation

Assembly

Always work in the following sequence when assembling or dismantling an electrohydraulic circuit.

- 1. The hydraulic power pack and electrical power supply must be switched off during the assembly of the circuit.
- 2. All components must be securely fitted to the profile plate or mounting frame.
- Connect up the hydraulic hose lines. All valves, other components and hose lines are fitted with selfclosing quick-acting couplings. Do not exceed the maximum permissible pressure of 12 MPa (120 bar). The maximum operating pressure is 6 MPa (60 bar).
- Connect up the electrical cables. Connect test leads to the component sockets by means of 4 mm plugs.
- 5. Before commissioning a hydraulic control circuit, check that all return lines are connected and that all connectors are secure.
- 6 Switch on the electrical power supply first and then the hydraulic power pack.
- 7. Commissioning the control circuit
 - Press the START pushbutton
 - Set components, etc.
 - Compare what you have assembled with the description in thebook.

Dismantling

8. Before dismantling the circuit, ensure that pressure in hydraulic components has been released:

Couplings must be disconnected only under zero pressure!

9. Switch off the hydraulic power pack first and then the electrical power supply.

Technical notes

Observe the following in order to ensure safe operation.

- The hydraulic power pack incorporates an adjustable pressure relief valve. In the interests of safety, the pressure is limited to approx. 6 MPa (60 bar). Every time a control circuit is assembled on the profile plate, a second pressure relief valve is used. We recommend that this should be set to a maximum pressure of 5 MPa (50 bar).
- All valves, cylinders and hose lines are fitted with quick-acting couplings which ensure minimum leakage. The maximum pressure for all components in the training package is 12 MPa (120 bar). Thanks to their design, the couplings reduce leakage during connection and disconnection to a minimum.

The operating pressure should not exceed 6 MPa (60 bar)

In the case of double-acting cylinders, the pressure intensification effect may produce an increased pressure proportional to the area ratio of the cylinder. With an area ratio of 1:1.7 and an operating pressure of 6 MPa (60 bar), this increased pressure may be over 10 MPa (100 bar)!

Fig. 2: Pressure intensification

- If connections are detached under pressure, the non-return valve in the coupling may cause pressure to become trapped in the valve or other component concerned. The pressure relief device can be used to release this pressure. Exception: This is not possible in the case of hose lines and non-return valves. Ensure therefore that control circuits are depressurised before hose lines are disconnected and the circuit is dismantled.
- All valves, other components and hose lines are fitted with selfclosing quick-acting couplings. This prevents the accidental spillage of hydraulic fluid. In the interests of simplicity, these couplings are not shown in circuit diagrams.

Fig. 3: Simplified representation in circuit diagrams

Symbolic representation of directional control valves

Valves are shown in the "Circuit diagram, hydraulic" in essentially the same way as in the textbook. The crossover position is on the right and the parallel position on the left. Working port A is, however, on the right, and port B is therefore on the left. This symbolic representation conforms to the new "Hydraulics 2000" hardware.

The drawing "Practical assembly, hydraulic" is based on the symbol on the valve. The crossover position is on the left and the parallel position on the right. Working port A is now on the left and port B on the right. This symbolic representation is hardware-oriented.

The two different symbolic representations describe all functions of a given valve. In practice, valves by different manufacturers with identical functions are sometimes given different symbols. This is permitted by the applicable standard, DIN ISO 1219 Part 1, of November 1993 with the title "Fluidics: Graphic Symbols and Circuit Diagrams".

Representation of directional control valves

Since hydraulic valves are very expensive, only a small number of these and only a small number of different types are used in the equipment set.

	Basic function in "Circuit diagram, hydraulic"	Connection of 4/2-way solenoid valve in "Practical assembly, hydraulic"
2/2-way valve with closed in neutral position		
2/2-way valve with flow in neutral position		
3/2-way valve with closed in neutral position		
3/2-way valve with flow in neutral position		

The 4/2-way valve can be used to produce four further basic functions.

Ports on the directional control valve which are not required are sealed by the self-closing coupling nipples. It is not necessary to seal these ports by means of plugs. The 4/3-way valve with closed mid-position fulfils various different functions in the exercises in this book.

	Function of solenoid valves in "Circuit diagram, hydraulic"	Connection of 4/3-way solenoid valve in "Practical assembly, hydraulic"
No electrical connection is made to solenoid 1Y2		$\begin{array}{c c} AT & B \\ AT & T \\ T & T \\ T & T \\ 1Y1 \\ P & T \\ T \\ 1Y2 \end{array}$
Solenoid 1Y2 must be activated in "Practical assembly, electrical" via an additional path.		$\begin{array}{c c} A & B \\ A & T \\ T & T \\ T \\ 1Y2 \\ P \\ T \\ T$
No electrical connection is made to solenoid 1Y2.		$\begin{array}{c c} AT \\ AT \\ T \\ T \\ T \\ T \\ 1Y1 \\ P \\ T \\ T$
No electrical connection is made to solenoid 1Y1		$\begin{array}{c c} A_1 & T^B \\ \hline \\ \hline \\ \hline \\ 1Y1 \\ P^T & T \\ \hline \\ 1Y2 \\ \end{array}$

Electrical

Power supply: 230 VAC, 50 Hz

- The hydraulic power pack is protected by a 10 A fuse.
- The short-circuit proof electrical power supply has a 3 A fuse.
- The output voltage of this power supply is 24 V DC.
- The output current is limited to a maximum of 4.5 A.

Wiring:

Universal cable set: 61 red and 37 blue laboratory cables in 5 lengths. All electrohydraulic components are equipped with 4 mm sockets. The electrical connections for these components are made using the laboratory cables with 4 mm plugs.

A distinction should be made between the two designs of electrical limit switches:

- Electrical limit switch, actuated from the left.
- Electrical limit switch, actuated from the **right**.
- When cylinder piston speeds are high, the limit switches should be actuated by cylinder cams only in the specified direction.
- Limit switches must not be actuated from the front.
- Both types of limit switches are shown by the same symbol in the hydraulic and electrical circuit diagrams.

Training contents

- Basic physical principles of electrical engineering and hydraulics
- Function and use of electrical and electrohydraulic components such as switches, pushbuttons and solenoid valves
- Naming and identifying electrical and hydraulic symbols
- Development and reading of standard circuit diagrams
- Representation of control exercises as function diagrams
- Drafting, assembly and commissioning of basic circuits
- Direct and indirect activation of cylinders
- Activation of a hydraulic motor
- MANUAL and AUTOMATIC modes
- Position and pressure dependent control circuits
- Interlock circuit
- Rapid-traverse circuit
- Fault-finding with simple electrohydraulic control circuits
- Function and use of electronic sensors, hydraulic motors and hydraulic accumulators
- Complex sequence controls
- Combination position and pressure dependent control circuits
- Electrical control circuit with several actuators
- Sequence controls with MANUAL/AUTOMATIC, EMERGENCY STOP and SETTING modes
- Circuit with hydraulic accumulator
- Position and time dependent control circuits
- Systematic fault-finding in electrohydraulic control circuits
- Development of sequence controls from a function diagram
- Controls with timer relays with pick-up and drop-off delays
- Counter controls with predetermining counters

Advanced Level (TP602)

Basic Level (TP601)

List of training aims

Training aims	Ex	ercis	se										
	1	2	3	4	5	6	7	8	9	10	11	12	13
Actuation of double-acting cylinders	•	•		•	•	•	•	•	•	•	•	•	•
Actuation of single-acting cylinders			•										
Actuation of a hydraulic motor												•	
Direct actuation	•												
Indirect actuation		•	•	•	•	•	•	•	•	•	•	•	•
Control circuit operated manually	•	•	•										
Control circuit with latching				•	•								
Use of a pressure switch					•					•		•	
Production of a differential circuit						•		٠					
Interlock circuit							•						
INCHING operation							•						
Use of limit switches								•	•	•	•	•	•
Rapid-traverse feed circuit									•	•			
Pressureless pump bypass												•	

Training aims/exercise table (Table 1)

TP601 • Festo Didactic

Equipment set for Basic Level TP 601

This equipment set has been compiled for use in basic training in electrohydraulic control technology. The set can be combined in any desired way with other equipment sets from the Festo Didactic Learning System.

Description	Order No.	Qty.
Pressure gauge	152841	3
One-way flow control valve	152843	1
Non-return valve, 1 bar	152845	1
Non-return valve, 5 bar	152846	1
Branch tee	152847	8
Pressure relief valve, pressure sequence valve	152848	2
2-way flow control valve	152851	1
Non-return valve, piloted	152852	1
Double-acting cylinder, 16/10/200	152857	1
Hydraulic motor, 8 l/min	152858	1
Loading weight, 9 kg	152972	1
Relay, 3-fold*	162241	2
Signal input unit, electrical*	162242	1
Indicator and distributor unit, electrical *	162244	1
4/2-way solenoid valve	167082	1
4/3-way solenoid valve closed in mid-position	167083	1
Limit switch, electrical, actuated from the right	183322	2
Limit switch, electrical, actuated from the left	183345	2

Order No.: 184463 for equipment set TP 601

We recommend	Order No.	Qty.
Hose line with quick-release coupling, 600 mm	152960	10
Hose line with quick-release coupling, 1000 mm	152970	8

* These components can be mounted in the mounting frame or, by using the adapter set (Order No. 35651), on the profile plate.

Symbols for equipment setTP 601

Equipment set for Advanced Level TP 602

This equipment set has been compiled for advanced-level teaching of electrohydraulic control technology. The two equipment sets TP 601 and TP602 can be expanded in any desired way with other equipment sets from Festo Didactic's Learning System for Automation and Communications.

Order No.: 184464 for equipment set TP 602

Description	Order-No.	Qty.
Relay, 3-fold*	162241	2
Timer relay, 2-fold*	162243	1
Predetermining counter, electrical, additive *	162355	1
Indicator and distributor unit, electrical *	162244	1
Pressure switch	167080	1
Branch tee	152847	4
Pressure relief valve, piloted	152849	1
3-way pressure reducing valve	152850	1
4/2-way solenoid valve	167082	1
Double-acting cylinder, 16/10/200	152857	1
Diaphragm accumulator with shut-off block	152859	1
EMERGENCY STOP, electrical	183347	1
Proximity switch, inductive	178574	1
Proximity switch, capacitive	178575	1
Proximity switch, optical	178577	1

We recommend:	Order-No.	Qty.
Hose line with quick-release coupling, 600 mm	152960	10
Hose line with quick-release coupling, 1000 mm	152970	2

* These components can be mounted in the mounting frame or, by using the adapter set (Order No. 35651), on the profile plate.

List of additional	components	for	TP600
--------------------	------------	-----	--------------

Description	Order-No.
Extension kit for hydraulic cylinder	120778
Throttle valve	152842
Shut-off valve	152844
Hose line with quick-release coupling, 600 mm	152960
Power pack, hydraulic, 2 l/min	152962
Hose line with quick-release coupling, 1000 mm	152970
Pressure relief device	152971
Cover (for loading weight, 9 kg)	152973
Hose line with quick-release coupling, 1500 mm	158352
Hose line with quick-release coupling, 3000 mm	159386
Power supply unit, attachment fixture, 24V 4.5A, Deutsch	159396
Profile plate, large	159411
Set of labels, Hydraulics	162383
Power supply unit, table, 24V 4.5A, Deutsch	162417
Flow rate / rotary speed measuring device	167081
4/3-way solenoid valve with relieving mid-position	167084
4/3-way solenoid valve with recirculating mid-position	167085
Cable set with safety plugs	167091
Coupling nipple	342047
Coupling socket	346491

For further additional components from our "Hydraulics 2000" system, please see our price lists.

Description	Exercise												
	1	2	3	4	5	6	7	8	9	10	11	12	13
Relay, 3-fold		1	1	1	1	1	1	1	1	1	1	1	2
Signal input unit, electrical	1	1	1	1	1	1	1	1	1	1	1	1	1
Indicator and distributor unit, electrical		1	1	1	1	1	1	1	1	1	1	1	1
Pressure gauge		2	2	2	2	2	1	2	2	2	1	2	2
One-way flow control valve		2	1				1			1		1	2
Non-return valve, 1 bar									1				
Non-return valve, 5 bar												1	
Pressure relief valve, pressure sequence valve		1	1	1	1	1	1	1	1	2	1	1	1
2-way flow control valve				1	1	1		1	1	1	1		
Non-return valve, piloted							1					1	
4/2-way solenoid valve	1	1	1	1	1	1	1	1	1	1	2	1	1
4/3-way solenoid valve with closed in mid-position							1	1	1	1		1	1
Double-acting cylinder 16/10/200	1	1	1	1	1	1	1	1	1	1	1	1	2
Hydraulic motor, 8 l/min													
Limit switch, electrical, actuated from the left								1	1		1		2
Limit switch, electrical, actuated from the right								1	1	1	1	2	2
Loading weight			1										
Branch tee		2	3	2	2	2	3	2	7	4	4	5	4
Hose line with quick-release coupling, 600 or 1000 mm	4	5	7	7	7	7	9	9	11	11	8	12	12

Component/exercise table (Table 2)

For exercises 5, 10 and 11 a pressure switch of the equipment set TP 602 is required. For exercise 13 you will need another double-acting cylinder.

Methodological structure of exercises

All 13 exercises have the same methodological structure.

- The exercises in Part A are structured as follows:
 - Subject
 - Title
 - Training aim(s)
 - Exercise
 - Problem definition
 - Positional sketch

A worksheet then follows for use in carrying out the exercise:

- The suggested solutions in Part C are structured as follows:
 - Circuit diagram, hydraulic-
 - Circuit diagram, electrical
 - Solution description with evaluation and conclusions
 - Practical assembly, hydraulic
 - Practical assembly, electrical
 - Components list, hydraulic
 - Components list, electrical
- How should I work through an exercise?
 - Read the worksheet
 - Complete the worksheet
 - Assemble and commission the control circuit
 - Work out your own solution
 - Compare your solution with the one in this book
 - Incorporate your solution into the control circuit
 - Commission this circuit
 - Does your control circuit fulfil the requirements specified in theworksheet?

Part A – Course

Simple control circuits without limit switches

Exercise	1:	Sorting device Double-acting cylinder, directly actuated, manually	A-3
Exercise	2:	Component selection on conveyor belt Double-acting cylinder, directly actuated, manually	A-13
Exercise	3:	Lifting station Single-acting cylinder, directly actuated, manually	A-23
Exercise	4:	Bending device Double-acting cylinder, latching	A-29
Exercise	5:	Press-fitting device Double-acting cylinder, latching, return stroke using pressure switch	A-33
Exercise	6:	Stamping machine Double-acting cylinder, differential circuit	A-39
Exercise	7:	Door control Double-acting cylinder, interlock, INCHING operation	A-43

Control circuits with limit switches

Exercise 8:	Machining unit Differential circuit, return stroke using limit switch	A-49
Exercise 9:	Feed for drilling machine Rapid-traverse feed circuit, speeds controlled by limit switch	A-53
Exercise 10:	Press Pressure control circuit with limit switch and pressure switch	A-59
Exercise 11:	Feed device Pressureless pump bypass with limit switch	A-63

Control circuits with two actuators

Exercise 12	 Assembly device Pressure-dependent sequence control with cylinder and hydraulic motor 	A-69
Exercise 13	 Lifting device for packages Position-dependent sequence control with two cylinders 	A-75

We hope you enjoy the designing and practical assembly of the circuits. Understanding hydraulics is fun!

Electrohydraulics	Subject
Sorting device	Title
 Understanding an directly actuated, manually operated circuit Actuation of a double-acting cylinder using a 4/2-way solenoid valve Naming the most important components of a double-acting cylinder Naming the most important components of a 4/2-way solenoid valve Understanding the use of the electrical signal input unit Selection of repuired components Developing and drawing the hydraulic and electrical circuit diagrams Understanding the variants available for mounting components on the profile plate Mounting components in a mounting frame Working with hydraulic hose lines Connecting up electrical test leads in accordance with a diagram Commissioning the control circuit 	Training aims
 Complete the worksheets Define the required components Draw the hydraulic and electrical circuit diagrams Label the connections Number the components in the circuit assembly Familiarise yourself with the hydraulic and electrical power supplies Carry out practical assembly of the hydraulic and electrical control circuits Commission the control circuit Compile the components lists Dismantle the control circuit and replace the components in the storage tray 	Problem definition

Exercise 1

Exercise A sorting device is used to sort heavy steel workpieces.

When a START pushbutton is pressed, the piston rod of a double-acting cylinder pushes the adjacent workpiece off the conveyor belt. When the START pushbutton is released, the piston rod returns to ist retracted end position.

Parameter

Only a small number of hydraulic and electrical components should be used.

WORKSHEET

Produce a freehand sketch of the double-acting cylinder.

Name the six most important components of the cylinder. Number these on your freehand sketch.

<u>1.</u>	
2	
<u>3.</u>	
4.	
5.	
<u>6.</u>	

Fig. 1/3: Isometrische Projektion 4/2-Wege-Magentventil

Produce a freehand sketch of the 4/2-way solenoid valve.

Name five major components of the 4/2-way solenoid valve. Number these on your freehand sketch.

1.			
2.			
3.			
4			
5			
5.			
WORKSHEET

Name five major components of the electrical signal input unit. Number these on the illustration.

Fig. 1/4: Signal input unit (photo)

<u>1.</u>		
2.		
3.		
4.		
5.		

Fig. 1/5: Signal input unit; front panel

Mark the connection designations on the front panel. What colour are the 4 mm sockets? Please indicate this. What is the difference in the function of a pushbutton and a switch?

WORKSHEET

Complete the hydraulic circuit diagram.

Complete the list of hydraulic components.

List of Qty. Description Hydraulic power pack, 2 l/min Double-acting cylinder, 16/10/200 Hose line with quick-release coupling, 600 and 1000

Fig. 1/6: Circuit diagram, hydraulic

List of	
hydraulic componen	ts

Complete the electrical circuit diagram.

Fig. 1/7: Circuit diagram, electrical

Complete the list of electrical components.

List of electrical components

of S	Qty.	Description
0		Signal input unit, electrical
		Cable set, universal with safety plugs
		Power supply unit, 24V

WORKSHEET

How do you mount the cylinder on the profile plate?

Fig. 1/8: Variant B

How do you mount the 4/2-way solenoid valve on the profile plate?

Fig. 1/9: Variant A

Fig. 1/10: Variant D

How do you mount the electrical signal input unit on the profile plate??

Where else could you mount the electrical signal input unit?

A-13

Exercise 2

Electrohydraulics	Subject
Component selection on conveyor belt	Title
 Understanding an indirectly actuated, manually operated circuit Understanding the mode of operation of a throttle valve and one-way flow control valve Understanding the mode of operation of a pressure relief valve Understanding the use of the electrical indicator and distributor unit Understanding the use of the 3-fold relay unit Understanding the function of a relay Understanding contact designations Selection of required components Development of hydraulic and electrical circuit diagrams Assembly of control circuit on profile plate Commissioning the control circuit Adjustment of a one-way flow control valve Adjustment of the motion time of a cylinder 	Training aims
 Complete the worksheets Define the required components Draw the hydraulic and electrical circuit diagrams Label the connections Number the components in the circuit assembly Carry out practical assembly of the hydraulic and electrical control circuits Commission the control circuit Compile the components list Dismantle the components and replace in storage trays 	Problem definition

Exercise A double-acting cylinder is used to push unsealed cartons from one conveyor onto another. The advance stroke of the cylinder is manually controlled. The advance-stroke speed is adjustable, while the returnstroke speed is fixed. The pressure should be measured upstream of the cylinder and of the directional control valve.

WORKSHEET

What are the component parts of the one-way flow control valve?

Fig. 2/2: One-way flow control valve

What is the mode of operation of an adjustable throttle valve?

For what purpose are non-return valves used?

Name three practical examples.

Explain the mode of operation of a one-way flow control valve.

A-17

Exercise 2

WORKSHEET

What are the component parts of the pressure relief valve?

Fig. 2/3: Pressure relief valve

What function does the 4/2-way solenoid valve have in the activation of a double-acting cylinder?

For what purpose do you require the electrical indicator and distributor unit?

Fig. 2/4: Indicator and distributor unit, electrical

WORKSHEET

What are the major component parts of the 3-fold relay unit?

Fig. 2/5: Relay, 3-fold

How does the relay in the illustration work?

- Label the normally-open contacts of relay 1.
- Label the normally-closed contacts of relay 2.
- Label the changeover contacts of relay 3.

WORKSHEET

Complete the hydraulic circuit diagram.

Fig. 2/8: Circuit diagram, hydraulic

Complete the list of hydraulic components.

Qty.	Description	
	Hydraulic power pack, 2 l/min	
	Pressure gauge	
	Pressure relief valve	
	Branch tee	
	Hose line with quick-release coupling, 600 and 1000	

List of hydraulical components

Complete the electrical circuit diagram.

Fig. 2/9: Circuit diagram, electrical

How is it possible to initiate advance and return strokes of the cylinder using only **one** electrical actuating device?

List of electrical components

Qty.	Description
	Indicator and distributor unit
	Cable set, universal with safety plugs
	Power supply unit, 24V

Electrohydraulics	Subject
Lifting station	Title
 Understanding how to use a 4/2-way solenoid valve to actuate a sin- gle-acting cylinder 	Training aims
 Demonstrating that a 4/2-way valve can also be used as a 3/2-way valve or 2/2-way valve 	
 Understanding the difference between open and closed mid-positions 	
 Development and drawing of hydraulic and electrical circuit diagrams 	
 Assembly of control circuit on profile plate 	
 Handling a 9 kg loading weight 	
 Commissioning the control circuit 	
 Understanding the effect of a compressive load 	
 Complete the worksheets 	Problem definition
Problem definition	
Define the required components	
 Draw the hydraulic and electrical circuit diagrams 	
Label the connections	
 Number the components in the circuit assembly 	
 Carry out practical assembly of the hydraulic and electrical control circuits 	
 Commission the control circuit 	
 Compile the components lists 	
Caution!	٨
Risk of serious injury	\sum
Oily components may easily slip out of your hands. This exercise involves the use of a heavy weight. – Clean the weight before handling it – Make sure you have a secure grip on the weight	
les the sever when working with the weight	

- Use the cover when working with the weight. This prevents the danger of trapping your fingers See list of additional components

TP601 • Festo Didactic

Exercise Crates arriving on a conveyor belt must be raised to the height of a packing conveyor by means of a lifting table. The raising and lowering of the lifting table are to be controlled manually by means of a single-acting hydraulic cylinder. The advance stroke is adjustable, while the return stroke cannot be adjusted and is governed by the weight of the lifting table. The pressure should be measured upstream of the cylinder and of the directional control valve.

A-25 Exercise 3

WORKSHEET

An electrohydraulic 4/2-way valve can be used to produce a number of different functions. Which ports must be used to produce a given function? (The other ports remain closed.).

Fig. 3/2: Application of 4/2-way valve

* Internal leakage-oil connection

How must the 4/2-way solenoid valve be connected up so that the single-acting cylinder is able to advance and also retract again?

<u>A-27</u>

WORKSHEET

Complete the hydraulic circuit diagram.

Fig. 3/4: Circuit diagram, hydraulic

Complete the list of hydraulic components.

Qty.	Description
	Hydraulic power pack, 2 l/min
	Pressure gauge
	Loading weight, 9 kg
	Branch tee
	Hose line with quick-release coupling, 600 and 1000

List of hydraulical components

Complete the electrical circuit diagram.

Fig. 3/5: Circuit diagram, electrical

Complete the list of electrical components.

List of electrical components	Qty.	Description
		Relay, 3-fold
		Signal input unit, electrical
		Indicator and distributor unit, electrical
		Cable set, universal with safety plugs
		Power supply unit

TP601 • Festo Didactic

Electrohydraulics	Subject
Bending device	Title
 Understanding of the mode of operation of a 2-way flow control valve Understanding electrical latching Selection of required components Development and drawing of hydraulic and electrical circuit diagrams Correct identification of electrical symbols in a circuit diagram Assembly of control circuit on a profile plate Commissioning the control circuit Setting pressure values Compiling a list of electrical components Compiling a list of hydraulic components 	Training aims
 Complete the worksheet Define the required components Draw the hydraulic and electrical circuit diagrams Label the connections Number the components Carry out practical assembly of the hydraulic and electrical control circuits 	Problem definition

- Commission the control circuit
- Compile the components lists

Exercise A bending device with a double-acting cylinder is used to produce Ushaped sheet-metal workpieces. The start signal for this operation is given by a pushbutton. After the workpiece has been shaped, a second pushbutton is used to initiate the return stroke of the cylinder. No provision will be made in this exercise for the safety devices required in normal practice. The advance and return strokes must be executed at a slow adjustable speed. What type of flow control valve should you use to allow the speed to be adjusted independently of load?

WORKSHEET

Complete the hydraulic circuit diagram.

Fig. 4/2: Circuit diagram, hydraulic

Complete the list of hydraulic components.

Qty.	Description

List of hydraulical components

Complete the electrical circuit diagram.

Complete the list of electrical components.

List of electrical components	Qty.	Description

Electrohydraulics	Subject
Press-fitting device	Title
 Understanding the structure of a function diagram Reading and understanding a function diagram 	Training aims
 Reading and understanding a function diagram Use of a pressure switch 	
Understanding electrical latchingSelection of required components	
 Development and drawing of hydraulic and electrical circuit diagrams 	
 Assembly of control circuit on a profile plate Commissioning the control circuit 	
 Compiling components lists Setting pressure values 	
 Complete the worksheets 	Problem definition
 Define the required components 	

- Draw the function diagram
- Draw the hydraulic and electrical circuit diagrams
- Number the components
- Carry out practical assembly of the hydraulic and electrical control circuits
- Commission the control circuit
- Compile the components list

Exercise A press-fitting device is to be used to assemble workpieces. If the preset press pressure is exceeded (for example, because workpieces are incorrectly aligned), the piston rod must be retracted for safety reasons. After a correct press-fitting operation, the return stroke should be initiated when the value preset on the pressure switch of 3 MPa (30 bar) is reached. A one-way flow control valve is fitted in the supply line of the cylinder. Describe the point in time after the circuit is switched on at which the pressure switch is triggered if the pressure is measured upstream of the throttle valve.

What is the correct point at which to measure the pressure?

WORKSHEET

Fig. 5/2: Function diagram

Step 3 is the same as step 1.

- Familiarise yourself with the mode of representation used in function diagrams by consulting:
- The textbook "Electrohydraulics Basic Level TP601"
- VDI¹ 3260, July 1977
 "Function Diagrams for Production Machines and Installations"

What is the structure of a function diagram?

¹ VDI = "Verein Deutscher Ingenieure" (German Engineering Association)

Complete the hydraulic circuit diagram.

Complete the list of hydraulic components.

List of	Qty.	Description

A-37 Exercise 5

WORKSHEET

Complete the electrical circuit diagram.

Complete the list of electrical components.

Qty.	Description	Lis
		CIC

List of electrical components

What procedure do you use for connecting hoses to the components?

What must you bear in mind when disconnecting hose lines fitted with quick-acting couplings?

Do you have experience of working with the pressure relieving device?

Yes
No

A-39

Exercise 6

Electrohydraulics	Subject
Stamping machine	Title
 Understanding a differential circuit Understanding how a 3/2-way valve can be used to activate a double-acting cylinder Selection of required components Development and drawing of hydraulic and electrical circuit diagrams Assembly of control circuit on a profile plate Commissioning the control circuit Compiling components lists Setting pressure values 	Training aims
 Complete the worksheet Define the required components Draw the hydraulic and electrical circuit diagrams Label the connections Number the components Carry out practical assembly of the hydraulic and electrical control circuits 	Problem definition

Commission the control circuit

Compile the components list

A-40

- *Exercise* A hydraulic power pack with a very low pump delivery rate is all that is available to operate a stamping machine. A suitable circuit must be used to increase the advance-stroke speed. The power pack output is sufficient to allow this.
 - A flow control value is installed at a suitable point in the circuit. This reduces the flow rate to the cylinder.

A-41

WORKSHEET

Complete the hydraulic circuit diagram.

Complete the list of hydraulic components.

Qty.	Description	List of hydraulical components
		,

Complete the electrical circuit diagram.

Fig. 6/3: Circuit diagram, electrical

Complete the list of electrical components.

Electrohydraulics	Subject
Door control	Title
 Understanding the mode of operation of a piloted non-return valve Understanding an electrical interlock Understanding the positioning of a cylinder in INCHING operation Classifying hydraulic valves Understanding how to use a 4/3-way solenoid valve to actuate a double-acting cylinder Demonstrating that a 4/3-way valve can also be used as a 3/2-way valve Identifying, assembling and assessing an alternative solution Selection of required components Development and drawing of hydraulic and electrical circuit diagrams Assembly of control circuit on a profile plate Commissioning the control circuit Setting pressure values 	Training aims
 Complete the worksheets Define the required components Draw the hydraulic and electrical circuit diagrams Label the connections Number the components Carry out practical assembly of the hydraulic and electrical control circuits 	Problem definition

- Commission the control circuit
- Compile the components list

A-44

Exercise A double-acting hydraulic cylinder is used to open and close a furnace door. INCHING operation allows the door to be driven to any desired intermediate position. The cylinder is hydraulically clamped in all such positions.

A-45

WORKSHEET

Complete the hydraulic circuit diagram.

Fig. 7/2: Circuit diagram, hydraulic

Complete the list of hydraulic components.

Classify the components by stating whether they are non-return valves, pressure valves, flow control valves, directional control valves, actuators, or other hydraulic components.

List of	Qty.	Description	Belongs to class of:
nyuraulicai components	1	Hydraulic power pack, 2 l/min	Other hydraulic components

A-47

WORKSHEET

Complete the electrical circuit diagram.

Complete the list of electrical components.

Qty.	Description	List of electrical components
		,

Electrohydraulics	Subject
Machining unit	Title
 Understanding a second variant of a differential circuit Understanding the use of electrical limit switches Correct use of right-hand and left-hand limit switches Selection of required components Development and drawing of hydraulic and electrical circuit diagrams Assembly of control circuit on a profile plate Commissioning the control circuit Compiling components lists Setting pressure values 	Training aims
Complete the worksheetDefine the required componentsDraw the function diagram	Problem definition

- Draw the hydraulic and electrical circuit diagrams
- Number the components
- Carry out practical assembly of the hydraulic and electrical control circuits
- Commission the control circuit
- Compile the components list

Exercise The edges of workpieces must be chamfered. It has been possible to reduce the machining time by using improved tools. The feed speed is therefore to be increased by using a differential circuit.

The clamping device can accept up to 5 workpieces at the same time. In order to reduce the working stroke when the number of workpieces is less than 5, the cylinder return stroke is to be initiated by an adjustable limit switch.

Install a flow control valve at a suitable point in the circuit so that the effect of the differential circuit can clearly be seen.

A-51

WORKSHEET

Complete the hydraulic circuit diagram.

Fig. 8/2: Circuit diagram, hydraulic

Complete the list of hydraulic components.

Qty.	Description

List of hydraulical components

Complete the electrical circuit diagram.

Complete the list of electrical components.

Feed for drilling machine	Title
 Completion and understanding of a function diagram 	Training aims
 Understanding of a rapid-traverse circuit 	
 Selection of required components 	
 Development and drawing of hydraulic and electrical circuit diagrams 	
 Assembly of control circuit on a profile plate 	
 Commissioning the control circuit 	
 Compiling components lists 	
 Setting pressure values 	
 Complete the worksheets 	Problem definition
 Define the required components 	
 Draw the function diagram 	

- Draw the hydraulic and electrical circuit diagrams
- Number the components

Electrohydraulics

- Carry out practical assembly of the hydraulic and electrical control circuits
- Commission the control circuit
- Compile the components list

on

Subject

Exercise The feed of a drilling machine is to be automated. When carrying out drilling with large-diameter drilling bits, it is necessary to achieve constant feed characteristics and a finely-adjustable feed speed. The machine is therefore to be equipped with hydraulic feed, which must provide a rapid-traverse feed motion and a infinitely-adjustable working feed motion. The return stroke is to be initiated by pressing a second pushbutton. During this phase, the flow control valve is to be bypassed by means of a non-return valve.

A-55

WORKSHEET

Complete the function diagram.

TP601 • Festo Didactic

Complete the hydraulic circuit diagram.

Complete the list of hydraulic components.

A-57 Exercise 9

WORKSHEET

Complete the electrical circuit diagram.

Fig. 9/4: Circuit diagram, electrical

Complete the list of electrical components.

Qty.	Description	List
		0,00

List of electrical components

What is the purpose of the "Hydraulics 2000" transparent models?

What do these transparent models illustrate more clearly than the components mounted on the profile plate?

Have you already worked with the "Hydraulics" electronic transparencies?

eı	UI.	26	1	ι

Electrohydraulics	Subject
Press	Title
 Assembly of a pressure control with a limit switch and pressu switch 	re Training aims
 Selection of required components 	
 Development and drawing of hydraulic and electrical circuit d 	liagrams
 Assembly of control circuit on a profile plate 	
 Commissioning of a complex control circuit 	
 Understanding that it is necessary to preset components before power supply is switched on 	ore the
 Understanding that commissioning can be carried out in stag 	jes
 Compiling components lists 	
 Complete the worksheet 	Problem definition
 Define the required components 	
 Draw the hydraulic and electrical circuit diagrams 	
 Label the connections 	
 Number the components 	
 Carry out practical assembly of the hydraulic and electrical co circuits 	ontrol

- Commission the control circuit
- Compile the components list

A-60

Exercise 10

Exercise A hydraulic press is used to shape workpieces. An initial pressure of $p_1 = 1.5$ MPa (= 15 bar) is used to shape the material slowly. After a press stroke of approx. 100 mm, a switchover must be made as a function of position to a higher pressure of $p_2 = 4$ MPa (= 40 bar). After the pressing operation is complete, the pressure rises to the maximum value set on the pressure switch, $p_3 = 5$ MPa (= 50 bar). When this value is reached, the pressure switch initiates a return stroke of the press. The flow rate is to be adjustable by means of a flow control valve.

A-61 Exercise 10

WORKSHEET

Complete the hydraulic circuit diagram.

Fig. 10/2: Circuit diagram, hydraulic

Complete the list of hydraulic components.

Qty.	Description

List of hydraulical components

Complete the electrical circuit diagram.

Complete the list of electrical components.

List of electrical components	Qty.	Description

A-63

Exercise 11

Electrohydraulics	Subject
Feed device	Title
 Completion and reading of a function diagram Understanding of how pressureless pump bypass can be provided Selection of required components Development and drawing of hydraulic and electrical circuit diagrams Assembly of control circuit on a profile plate Commissioning the control circuit Compiling components lists Setting pressure values 	Training aims
 Complete the worksheets Define the required components Draw the function diagram Draw the hydraulic and electrical circuit diagrams Number the components Carry out practical assembly of the hydraulic and electrical control circuits 	Problem definition

- Commission the control circuit
- Compile the components list

TP601 • Festo Didactic

Exercise A double-acting hydraulic cylinder is used to eject pressed forgings from a metal tool.

The cooling time of the forgings has increased considerably due to the fact that a different material is now being used. To prevent an unnecessary rise in the temperature of the hydraulic fluid, the circuit must be switched to pressureless pump bypass after the ejection operation.

A-65

WORKSHEET

Complete the function diagram.

Complete the hydraulic circuit diagram.

Complete the list of hydraulic components.

List of	Qty.	Description

WORKSHEET

Complete the electrical circuit diagram.

Fig. 11/4: Circuit diagram, electrical

Complete the list of electrical components.

Qty.	Description	List of electrical components

What maintenance do you carry out on your equipment?

How old is the equipment which you are using for training?

Εl	ectrohydraulics	Subject
As	ssembly device	Title
	Production of a function diagram by the student working independ- ently	Training aims
	Use of a 4/2-way solenoid valve to activate a hydraulic motor	
	Assembly of a pressure-dependent sequence control with two actua- tors	
	Selection of required components	
	Development and drawing of hydraulic and electrical circuit diagrams	
	Assembly of control circuit on a profile plate	
	Commissioning the control circuit	
	Compiling components lists	
	Setting pressure values	
	Complete the worksheets	Problem definition
	Define the required components	
	Draw the function diagram	

- Draw the hydraulic and electrical circuit diagrams
- Number the components
- Carry out practical assembly of the hydraulic and electrical control circuits
- Commission the control circuit
- Compile the components list.

on

Exercise An assembly device is used to press-fit a plastic bush into a steel workpiece. A screw is then inserted to secure the connection.

When the START pushbutton S1 is pressed, the vertical double-acting press cylinder 1A presses the plastic bush into the steel workpiece. When the pressure in the piston chamber of the press cylinder reaches 4.5 MPa (45 bar), the horizontal hydraulic motor 3M screws in the left hand threaded coarse-pitch screw.

When the RETURN pushbutton S2 is pressed, the press cylinder 1A retracts and the motor M stops.

Parameters The cylinder must not slip when the hydraulic power pack is switched off.

Measures must be taken to ensure that the motor cannot rotate clockwise under any circumstances.

The speed of the press-fitting motion of the cylinder must be adjustable.

A visual indicator must show the position of the detented RETURN pushbutton S2. The visual indicator must not go out, allowing a re-start, until the switch has been unlocked.

WORKSHEET

Plot the function lines in the function diagram.

Components			Time		1 1	1 1	1 1	1 1	1 1	Fig. 12/2: Function diagram
			Step							
Description	Code	Status		1 :	2	3	4	5	6	
START pushbutton	S1	ON								
RETURN pushbutton	S2									
Cylinder	1A	2								
		1								
4/3-way valve	1Y1	а								
		0								
		b								
Motor	2M	2								
		1								
4/2 way valve	2Y	а								
		b	 							
		U U								

 $\begin{array}{l} S1 = START \ pushbutton \\ S2 = RETURN \ pushbutton \\ 1B = Pressure \ switch, \ p_1 = 2.5 \ Mpa = 25 \ bar \end{array}$

Fig. 12/3: Circuit diagram, hydraulic

Complete the hydraulic circuit diagram.

Complete the list of hydraulic components.

List of	Qty.	Description
nyuruullear componentis		

WORKSHEET

Complete the electrical circuit diagram.

Fig. 12/4: Circuit diagram, electrical

WORKSHEET

Complete the list of electrical components.

List of electrical components	Qty.	Description

Compile an electrohydraulics literature list.

Literature list	Author	Title	Publisher

TP601 • Festo Didactic	

- Electrohydraulics Subject Title Lifting device for packages Assembly of a position-dependent sequence control circuit with two Training aims cylinders Production of a function diagram by the student working independently Selection of required components Development and drawing of hydraulic and electrical circuit diagrams Assembly of control circuit on a profile plate Commissioning the control circuit Compiling components lists Setting pressure values Problem definition Complete the worksheets Define the required components
- Draw the function diagram
- Draw the hydraulic and electrical circuit diagrams
- Number the components
- Carry out practical assembly of the hydraulic and electrical control circuits
- Commission the control circuit
- Compile the components list

Exercise Packages are fed in by means of a gravity roller conveyor X and are lifted by cylinder 1A. Cylinder 2A then ejects the packages onto roller conveyor Y for further transport. Following this, the two double-acting cylinders return to their initial positions.

A-77 Exercise 13

WORKSHEET

Plot the signal lines in the function diagram.

Components			Time	1 1	1 1	1 1	1 1	1 1	Fig. 13/2: Function diagram
			Step						
Description	Code	Status	1	2	3 4	4	5 	6	
START pushbutton	S	ON							
Cylinder	1A	2							
		1							
4/3-way valve	1Y1	а							
		0							
	1Y2	b							
Cylinder	2A	2							
		1							
4/2-way valve	2Y	а							
		b							
S = S 1S1, 1S2, 2S1, 2S2 = Li	TART pus mit switch	shbutton nes	·						

Complete the hydraulic circuit diagram.

Complete the list of hydraulic components.

List of	Qty.	Description
WORKSHEET

Complete the electrical circuit diagram.

Exercise 13

Complete the "practical assembly hydraulic"

A-81

WORKSHEET

Complete the "practical assembly electrical"

Fig. 13/6: Practical assembly, elektrisch

S = STARTpushbutton 1S1, 1S2 = Limit switches 2S1, 2S2 = Limit switches Exercise 13

Complete the list of electrical components.

List of electrical components

Qty.	Description

How do you remove the components from the profile plate or mounting frame?

Where do you store your electrohydraulic components?

Part C – Solutions

Simple control circuits without limit switches

Solution	1:	Sorting device Double-acting cylinder, directly actuated, manually	C-3
Solution	2:	Component selection on conveyor belt Double-acting cylinder, directly actuated, manually	C-7
Solution	3:	Lifting station Single-acting cylinder, directly actuated, manually	C-11
Solution	4:	Bending device Double-acting cylinder, latching	C-15
Solution	5:	Press-fitting device Double-acting cylinder, latching, return stroke using pressure switch	C-19
Solution	6:	Stamping machine Double-acting cylinder, differential circuit	C-23
Solution	7:	Door control Double-acting cylinder, interlock, INCHING operation	C-27

_

Control circuits with limit switches

Solution 8:	Machining unit Differential circuit, return stroke using limit	C-33
Solution 9:	Feed for drilling machine Rapid-traverse feed circuit, speeds controlled by limit switch	C-39
Solution 10:	Press Pressure control circuit with limit switch and pressure switch	C-45
Control circu	uits with two actuators	
Solution 11:	Feed device Pressureless pump bypass with limit switch	C-49
Solution 12:	Assembly device Pressure-dependent sequence control with cylinder and hydraulic motor	C-55
Solution 13:	Lifting device for packages Position-dependent sequence control	

Sorting device

Fig.1/1: Circuit diagram, hydraulic

Fig.1/2: Circuit diagram, electrical

C-4

Solution 1

Solution description When the START pushbutton S is pressed, the circuit for the solenoid coil 1Y is closed and the 4/2-way solenoid valve is reversed. The piston rod of the double-acting cylinder advances to its forward end position.

When the pushbutton S is released, the circuit for solenoid coil 1Y is interrupted and the 4/2-way solenoid valve returns to its initial position. The piston rod of the cylinder returns to its retracted end position.

- Note on hydraulic circuit diagram Components are shown in this diagram by symbols. The 4/2-way solenoid valve is shown in the circuit diagram with the parallel position on the left and
 - the parallel position on the left and - the crossover position on the right.

This means that there are no intersecting lines in the circuit diagram. This is the same method of representation as is used in the textbook.

- Note on electrical circuit diagram In circuits with direct actuation, without relays, the control and power circuits are not separate.
- Note on "Practical assembly, hydraulic" drawing Components are also shown in the "Practical assembly, hydraulic" drawing by symbols.

The 4/2-way solenoid valve is shown in the same way as the symbol on the valve itself.

- Parallel position on the right
- Crossover position on the left

A line intersection thus occurs in the "Practical assembly, hydraulic" drawing.

Electrical components can also be mounted in the mounting frame if desired.

Fig.1/3: Practical assembly, hydraulic

Item no.	Qty.	Description	
0Z	1	Hydraulic power pack, 2 l/min	
1V	1	4/2-way solenoid valve	
1A	1	Cylinder, 16/10/200	
-	4	Hose line with quick-release coupling 600 and 1000	

Components list, hydraulic Fig.1/4: Practical assembly, electrical

Components list, electrical	Qty.	Description
chochhodi	1	Signal input unit, electrical
	1	Cable set, universal with safety plugs
	1	Power supply unit, 24V

Component selection on conveyor belt

Fig.2/1: Circuit diagram, hydraulic

Fig.2/2: Circuit diagram, electrical

Solution description When the START pushbutton S1 is pressed, the relay K1 is energised. The normally-open contact K1 supplies current to the solenoid coil 1Y and the 4/2-way solenoid valve is reversed. This causes the piston rod of the cylinder to advance. As soon as the START pushbutton S1 is released, the piston rod retracts again. The piston rod cannot stop in the vicinity of the conveyor system if S1 is not pressed. The one-way flow control valve can be used to adjust the advance-stroke speed.

Fig.2/3: Practical assembly, hydraulic

Item no.	Qty.	Description
0Z1	1	Hydraulic power pack, 2 l/min
0Z2, 1Z	2	Pressure gauge
0V	1	Pressure relief valve
1V1	1	4/2-way solenoid valve
1V2	1	One-way flow control valve
1A	1	Cylinder, 16/10/200
-	2	Branch tee
-	5	Hose line with quick-release coupling, 600 and 1000

Components list, hydraulic

Components list, electrical	Qty.	Description
ciccincui	1	Relay, 3-fold
	1	Signal input unit, electrical
	1	Indicator and distributor panel, electrical
	1	Cable set, universal with safety plugs
	1	Electrical power supply unit, 24V

C-11 Solution 3

Lifting station

Fig.3/1: Circuit diagram, hydraulic

+ 1 2 S1E - K1 S1 = START pushbutton K1 1Y - $\frac{1}{7}$

Fig.3/2: Circuit diagram, electrical

Solution description When the START pushbutton S1 is pressed, the relay K1 is energised. The normally-open contact K1 supplies current to the solenoid coil 1Y of the 3/2-way solenoid valve. The piston rod now advances. When the pushbutton S1 is released, the circuit with K1 and 1Y is interrupted, the valve closes by spring force and the piston rod retracts due to the load-ing weight. The advance-stroke speed can be adjusted by means of the one-way flow control valve.

The "Practical assembly, hydraulic" drawing shows a 4/2-way solenoid valve instead of the 3/2-way valve.

Fig.3/3: Practical assembly, hydraulic

Item no.	Qty.	Description	C F
0Z1	1	Hydraulic power pack, 2 l/min] '
0Z2, 1Z1	2	Pressure gauge	
0V	1	Pressure relief valve	
1V1	1	4/2-way solenoid valve	
1V2	1	One-way flow control valve	
1A	1	Cylinder, 16/10/200	
1Z2	1	Loading weight, 9 kg	
-	3	Branch tee	
-	7	Hose line with quick-release coupling, 600 and 1000	

Components list, hydraulic

C-15 Solution 4

Bending device

Fig.4/1: Circuit diagram, hydraulic

Fig.4/2: Circuit diagram, electrical

C-16

Solution 4

Solution description When the START pushbutton S1 is pressed, the relay K1 is energised; the normally-open contact of K1 latches to maintain the power supply for the relay K1. Simultaneously, current is fed to the coil 1Y via a further contact of K1. The solenoid reverses the 4/2-way solenoid valve and the piston rod advances and remains at its forward end position until the RETURN pushbutton S2 is pressed, which interrupts the circuit for the relay K1. This also causes the circuit for the coil 1Y to be interrupted, and the piston rod returns to its initial position. A flow control valve must be fitted to ensure that the speed does not vary as a function of load. This flow control valve should be fitted upstream of the directional control valve and will then control both the advance and return strokes.

Fig.4/3: Practical assembly, hydraulic

Components list, hydraulic

Item no.	Qty.	Description	
0Z1	1	Hydraulic power pack, 2 l/min	
0Z2, 1Z	2	Pressure gauge	
0V1	1	Pressure relief valve	
0V2	1	2-way flow control valve	
1V	1	4/2-way solenoid valve	
1A	1	Cylinder, 16/10/200	
-	2	Branch tee	
-		Hose line with quick-release coupling, 600 and 1000	

. ..

Compoi	nents	list,
	elect	rical

.

Qty.	Description
1	Relay, 3-fold
1	Signal input unit, electrical
1	Indicator and distributor panel, electrical
1	Cable set, universal with safety plugs
1	Electrical power supply unit, 24V

Further work

~

If both pushbuttons, S1 and S2, are pressed simultaneously, the cylinder retracts or remains in its retracted end position. We thus speak of a latching circuit with "dominating off" characteristics.

 Modify the electrical circuit in such a way as to obtain "dominating on" characteristics.

If both pushbuttons, S1 and S2, are pressed simultaneously in this case, the cylinder will advance or remain at its forward end position.

C-19 Solution 5

Press-fitting device

Fig.5/1: Circuit diagram, hydraulic

+ 1 2 3 4 S1E- K1 P K1 K1 K1 K2 K1 K1 K2 K1 K

Fig.5/2: Circuit diagram, electrical

Solution description When the START pushbutton S1 is pressed, the relay K1 is energised; the 1st normally-open contact of K1 maintains the power supply for the relay K1. Simultaneously, the circuit for the coil 1Y is closed via a further contact of K1. The 4/2-way valve reverses and the piston rod advances until the pressure preset on the pressure switch 1B is reached. The pressure switch acts via K2 to cancel the latching of K1. This also interrupts the circuit for the coil 1Y, causing this to become de-energised. The 4/2-way solenoid is reversed back by spring force and the piston rod returns to its initial position.

Fit the pressure sensor upstream of the one-way flow control valve: If the advance-stroke speed is controlled by a throttle valve, the throttle valve represents such a large resistance that, when the circuit is switched on, the pressure upstream of this valve rises to over 30 bar. The result of this is that the pressure switch initiates the return stroke before the correct press-fitting pressure has been reached. The pressure must therefore be measured directly upstream of the cylinder supply port.

C So

You will require a 2.5 mm Allen key to adjust the pressure switch.

Fig.5/3: Practical assembly, hydraulic

The return lines to the tank are no longer used in exercise 5 and subsequent exercises. Symbolic representation.

Item no.	Qty.	Description
0Z1	1	Hydraulic power pack, 2 l/min
0Z2, 1Z	2	Pressure gauge
0V	1	Pressure relief valve
1V1	1	4/2-way solenoid valve
1V2	1	One-way flow control valve
1A	1	Cylinder, 16/10/200
1B	1	Pressure switch
-	2	Branch tee
-	7	Hose line with quick-release coupling, 600 and 1000

Components list, hydraulic

Components list, electrical	Qty.	Description
	1	Relay, 3-fold
	1	Signal input unit, electrical
	1	Indicator and distributor panel, electrical
	1	Cable set, universal with safety plugs
	1	Electrical power supply unit, 24V

The following settings must be made:

C-23 Solution 6

Stamping machine

Fig.6/1: Circuit diagram, hydraulic

Fig.6/2: Circuit diagram, electrical

Solution description A differential circuit is only possible using cylinders with a single-ended piston rod and is intended to increase speed in the forward stroke, whilst pressure is applied to both piston surfaces. Due to the difference in surface areas, a differential force is created, which causes the piston rod to advance. The oil displaced on the piston rod side is fed to the large piston side. The active surface area for the pressing force corresponds to the piston rod surface area. This is why the pressing force is less in the case of increased advancing speed than if pressure is applied to a single-sided piston surface.

The solenoid coil 1Y of the 3/2-way valve is actuated via the START button S1. The piston rod advances using the recirculated oil. If the RETURN STROKE button S2 is pressed, 1Y is de-energised, the 3/2-way valve reverses by means of spring force and the piston rod retracts.

The flow control valve is used to represent a hydraulic power unit with reduced pump delivery. The effect of the differential circuit is thus more clearly identifiable.

The "Practical assembly, hydraulic" drawing shows a 4/2-way solenoid valve instead of the 3/2-way valve.

Fig.6/3: Practical assembly, hydraulic

Item no.	Qty.	Description
0Z1	1	Hydraulic power pack, 2 l/min
0Z2	1	Pressure gauge
0V1	1	Pressure relief valve
0V2	1	2-way flow control valve
1V	1	4/2-way solenoid valve
1A	1	Cylinder, 16/10/200
-	2	Branch tee
-	7	Hose line with quick-release coupling, 600 and 1000

Components list, hydraulic

The following settings must be made:

Pump safety valve	0Z1	to 6 MPa (60 bar)
Pressure relief valve	0V1	to 5 MPa (50 bar)

Components list, electrical	Qty.	Description
	1	Relay, 3-fold
	1	Signal input unit, electrical
	1	Indicator and distributor panel, electrical
	1	Cable set, universal with safety plugs
	1	Electrical power supply unit, 24V

Door control

Fig.7/1: Circuit diagram, hydraulic

Fig.7/2: Circuit diagram, electrical

Solution description The hydraulically-piloted non-return valve prevents the piston rod from being pulled out by the tractive load. The piloted non-return valve opens and allows the piston rod to advance only when the "Close door" pushbutton S1 is pressed, causing the 3/2-way valve to reverse. When the pushbutton S1 is released, the 3/2-way valve returns to its initial position and the piloted non-return valve closes immediately. The piston rod is hydraulically clamped and remains where it is. The hydraulic clamping ensures that the piston rod cannot be pulled out by a tractive load. When S1 is pressed again, the piston rod moves forward until the desired end position is reached.

When the "Open door" pushbutton S2 is pressed, the piston rod moves back. When S2 is released, the 4/3-way valve reverses, while the piston rod stays where it is and is hydraulically clamped. The two pushbuttons S1 and S2 are mechanically interlocked. If both of these are pressed at the same time or if one is held down and the other pressed, the piston rod stops.

The one-way flow control valve is installed on the piston-rod side in order to ensure that a back-pressure develops as the door closes. This pressure is used firstly to provide counter-holding and secondly to ensure reliable opening of the pilot-operated non-return valve.

Ser Star

If AC solenoid valves are used, the pushbuttons S1 and S2 must be interlocked to prevent damage to the solenoid coils if both of these are energised at the same time.

In the case of DC solenoids, an interlock should be provided for safety reasons.

Fig.7/3: Practical assembly, hydraulic

Components list, hydraulic

Item no.	Qty.	Description
0Z1	1	Hydraulic power pack, 2 l/min
0Z2	1	Pressure gauge
0V	1	Pressure relief valve
1V1	1	4/3-way solenoid valve closed in mid-position
1V2	1	4/2-way solenoid valve
1V3	1	Non-return valve, piloted
1V4	1	One-way flow control valve
1A	1	Cylinder, 16/10/200
-	3	Branch tee
-	9	Hose line with quick-release coupling, 600 and 1000

The following settings must be made:

Pump safety valve	0Z1	to 6 MPa (60 bar)
Pressure relief valve	0V	to 4 MPa (40 bar)

Components list, electrical	Qty.	Description
	1	Relay, 3-fold
	1	Signal input unit, electrical
	1	Indicator and distributor panel, electrical
	1	Cable set, universal with safety plugs
	1	Electrical power supply unit, 24V

C-31 Solution 7

Alternative solution

The supply line for 1Y3 is not connected up.

Fig.7/6 Alternative solution Practical assembly, hydraulic

TP601 • Festo Didactic

Machining unit

Solution 8

C-33

1S1, 1S2 = Limit switches S1 = START pushbutton

C-35 Solution 8

Solution description

000

The circuit is started by pressing S1. The 4/3-way valve then reverses, and the fluid from the piston-rod side is used together with the pump delivery to power the advance stroke of the cylinder. When the limit switch 1S2 is reached, the 4/3-way valve and 4/2-way valve are reversed and the piston rod retracts again. When the piston rod reaches the limit switch 1S1 at its retracted end position, the 4/2-way valve switches back to its initial position. A new processing cycle can now be started. In this circuit, the flow control valve is used only to restrict the pump delivery to allow a clearer demonstration of the effects of a differential circuit.

The limit switch 1S1 could also be installed directly in current path 4 in place of the normally-closed contact K2. In complex electrical circuits, the limit switch always operates as shown, via a relay.

Fig.8/4: Practical assembly, hydraulic

s list, raulic	Item no.	Qty.	Description
aune	0Z1	1	Hydraulic power pack, 2 l/min
	0Z2	1	Pressure gauge
	0V1	1	Pressure relief valve
	0V2	1	2-way flow control valve
	1V1	1	4/3-way solenoid valve closed in mid-position
	1V2	1	4/2-way solenoid valve
	1A	1	Cylinder, 16/10/200
	-	2	Branch tee
	-	9	Hose line with quick-release coupling, 600 and 1000

Components list, hydraulic

C-37 Solution 8

The following settings must be made:

	-
Pump safety valve	
Pressure relief valve	
Flow control valve	

0Z1 to 6 MPa (60 bar)

0V1 to 5 MPa (50 bar)0V2 in such a way that no oil emerges from the outlet T of 0V1 during the rapid ad-

vance stroke (approx. 1/2 to 1 turn open).

Compoi	nents	list,
	electi	rical

Qty.	Description
1	Relay, 3-fold
1	Signal input unit, electrical
1	Limit switch, electrical, actuated from the left
1	Limit switch, electrical, actuated from the right
1	Indicator and distributor panel, electrical
1	Cable set, universal with safety plugs
1	Electrical power supply unit, 24V

- *Further work* Assemble an alternative solution.
 - Swap over the directional control valves:
 4/2-way solenoid valve (1V1)
 - -4/3-way solenoid valve, closed in mid-position (1V2)
 - Complete the drawing "Practical assembly, hydraulic".
 - Complete the drawing "Practical assembly, electrical".
 - Assemble the control circuit on the profile plate. Commission the control circuit.
 - What are the advantages and disadvantages of the alternative solution?

C-39 Solution 9

Feed for drilling machine

Components			Time	Fig.9/1: Function diagram
Description	Code	Status		
ADVANCE pushbutton	S1	ON		
RETURN pushbutton	S2			
Cylinder		2		
		1	1S2 1S1	
4/2-way valve	1Y1	а		
		b		
2/2-way valve	1Y2	а		
		b		
			1S1, 1S2 = Limit switches S1 = START pushbutton S2 = RETURN pushbutton	

<u>C-41</u>

Solution 9

Solution description

During the rapid traverse motion, the 2-way flow control valve is bypassed via the 2/2-way directional control valve. Switchover from rapid to feed speed is position-dependent and is initiated by the limit switch 1S2, which feeds an electrical signal via the relay K2 to the solenoid coil 1Y2.

The return stroke is initiated by the pushbutton S2. In the retracted end position of the piston rod, the limit switch 1S1 switches the 2/2-way valve back to rapid traverse, thus fulfilling the condition for a re-start.

During the return stroke, the flow control valve is bypassed by the non-return valve, 1V4.

Fig.9/4: Practical assembly, hydraulic

Compo	nents	list,
	hydra	nulic

ltem no.	Qty.	Description
0Z1	1	Hydraulic power pack, 2 l/min
0Z2, 1Z	2	Pressure gauge
0V	1	Pressure relief valve
1V1	1	4/3-way solenoid valve closed in mid-position
1V2	1	4/2-way solenoid valve
1V3	1	2-way flow control valve
1V4	1	Non-return valve, 1 bar
1A	1	Cylinder, 16/10/200
-	7	Branch tee
-	11	Hose line with quick-release coupling, 600 and 1000

C-43 Solution 9

The following settings must be made:

Pump safety valve0Z1to 6 MPa (60 bar)Pressure relief valve0Vto 5 MPa (50 bar)

Fig.9/5 Practical assembly, hydraulic

Qty.	Description
1	Relay, 3-fold
1	Signal input unit, electrical
1	Limit switch, electrical, actuated from the left
1	Limit switch, electrical, actuated from the right
1	Indicator and distributor panel, electrical
1	Cable set, universal with safety plugs
1	Electrical power supply unit, 24V

Components list, electrical

C-45 Solution 10

Press

Fig.10/1: Circuit diagram, hydraulic

Fig.10/2: Circuit diagram, electrical

Solution description

Pre-settings:

Set the components before switching on the electrical and hydraulic power supplies.

1.	1V2	Close one-way flow control valve fully, then open 1/4 turn
2.	0V4	Bring 2-way flow control valve to mid-position
3.	0V2	Close pressure relief valve 2/3
4.	0V1	Close pressure relief valve 1/3
5.	1B	Open pressure switch fully

Commissioning:

After switching on the electrical and hydraulic power supplies, press the START pushbutton repeatedly to restore the circuit to its initial setting. The following settings must be made:

1.	0Z1	Pump safety valve to 6 MPa (60 bar)
2.	0V4	2-way flow control valve to mid-position
3.	0V2	Pressure relief valve to 1.5 MPa (15 bar)
4.	0V1	Pressure relief valve to 4 MPa (40 bar)
5.	1B	Pressure switch to approx. 3.6 MPa (36 bar)

When the START pushbutton S1 is pressed, the relay K1 is energised and latches via its normally-open contact in current path 2. A further normally-open contact of K1 energises the solenoid coil 1Y1 of the 4/2way valve and the piston rod advances. The 2/2-way valve is still open, with the result that the pressure relief valve, with its lower pressure setting, becomes operative. When the piston rod reaches the limit switch 1S, the 2/2-way valve is deactivated, producing a switchover to the pressure set on the 2nd pressure relief valve. When the piston rod reaches its forward end position, the pressure continues to rise until the preset pressure is reached. The pressure switch cancels the latching of K1 and K2. K1 reverses the 4/2-way valve to initiate the piston return stroke. The relay K2, which has also been de-energised, acts via the normally-closed contact in current path 7 to switch the system back to low pressure. A re-start can now be carried out.

Fig.10/3: Practical assembly, hydraulic

The supply line for 0Y2 is not connected up.

Components list, hydraulic

Item no.	Qty.	Description
0Z1	1	Hydraulic power pack, 2 l/min
0Z2, 1Z	2	Pressure gauge
0V1, 0V2	2	Pressure relief valve
0V3	1	4/3-way solenoid valve closed in mid-position
0V4	1	4/2-way solenoid valve
1V1	1	2-way flow control valve
1V2	1	One-way flow control valve
1B	1	Pressure switch
1A	1	Cylinder, 16/10/200
-	3	Branch tee
-	8	Hose line with quick-release coupling, 600 and 1000

Fig.10/4 Practical assembly, hydraulic

Compo	nents	list,
	electi	rical

Qty.	Description
2	Relay, 3-fold
1	Signal input unit, electrical
1	Limit switch, electrical, actuated from the right
1	Indicator and distributor panel, electrical
1	Cable set, universal with safety plugs
1	Electrical power supply unit, 24V

C-49 Solution 11

Feed device

Solution description

When the START pushbutton S1 is pressed, the coil of relay K1 is energised. Relay K1 latches via its 1st normally-open contact. The normally-closed contact of K1 de-energises relay K3, causing the normally-open contact of K3 to open and de-energise the solenoid valve 0Y2.

As a result, the 2/2-way valve reverses, shutting off the pressureless pump bypass, The pump delivers directly into the system.

Since the normally-open contact of K1 which supplies the solenoid coil 1Y1 is also closed, the 4/2-way valve reverses and the piston rod advances to the limit switch 1S1. 1S1 acts via K2 to cancel the latching of K1, thus de-energising the solenoid coil 1Y1 and switching the 4/2-way valve over for the return stroke.

When the piston rod reaches the limit switch 1S2 at the retracted end position, the 2/2-way valve is once again switched to pressureless bypass. The result of this is that the pump delivery is discharged to the tank not at the system pressure of 50 bar but only against the resistance of the 2/2-way valve. Fig.11/4: Practical assembly, hydraulic

Components list, hydraulic

Item no.	Qty.	Description
0Z1	1	Hydraulic power pack, 2 l/min
0Z2	1	Pressure gauge
0V1	1	Pressure relief valve
0V2	1	4/3-way solenoid valve closed in mid-position
0V3	1	2-way flow control valve
1V	1	4/2-way solenoid valve
1A	1	Cylinder, 16/10/200
-	4	Branch tee
-	8	Hose line with quick-release coupling, 600 and 1000

The following settings must be made:

Pump safety valve	0Z1	to 6 MPa (60 bar)
Pressure relief valve	0V1	to 5 MPa (50 bar)
Flow control valve	0V3	2 turns open

Fig.11/5 Practical assembly, hydraulic

S1 = START pushbutt	on
1S1, 1S2 = Limit switches	

Qty.	Description
1	Relay, 3-fold
1	Signal input unit, electrical
1	Limit switch, electrical, actuated from the left
1	Limit switch, electrical, actuated from the right
1	Indicator and distributor panel, electrical
1	Cable set, universal with safety plugs
1	Electrical power supply unit, 24V

Components list, electrical

C-55 Solution 12

Assembly device

Components			Time
			Step
Description	Code	Status	
Pushbutton	S1	ON	
RETURN-pushbutton	S2		
Cylinder	1A	2	
		1	
4/3-way valve	1Y1	а	
		0	
		b	
Motor	2M	2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
		1	
4/2-way valve	2Y	а	
		b	
S1 = START pushbutton		I	

Fig.12/1: Function diagram

S2 = RETURN pushbutton 1B = Pressure switch, $p_1 = 2.5$ MPa = 25 bar

Fig.12/3: Circuit diagram, electrical

When the START pushbutton S1 is pressed, the relay K1 is energised S and latches. The normally-open contact of K1 in current path 7 energises the solenoid coil 1Y1 of the 4/3-way valve. This causes the piston rod of cylinder 1A to advance.

When the pressure set on 1B is reached, the relay K3 is energised. As a result, the normally-open contact of K3 in current path 9 closes and the hydraulic motor rotates counterclockwise. The piston rod remains advanced until the switch S2 is actuated.

When the switch S2 is actuated, its detented position is shown by a visual indicator. S2 cancels the latching of K1 and K3, causing the 4/3-way valve to switch over and initiate the return stroke of the cylinder. Simultaneously, the pressure falls. The pressure switch causes the relay K3 to become de-energised, which results in the opening of the normallyopen contact of K3 in current path 9. 2Y accordingly becomes deenergised and the 4/2-way valve is reversed by spring force. The motor stops.

Only after the switch S2 is released (indicator lamp goes out) does the 4/3-way valve switch to its mid-position, allowing a new working cycle to be started.

In practice, a pressure sensor would not be used alone to determine whether cylinder 1A has reached its end position. An additional limit switch would also be used to provide reliable detection of the end position.

Solution description

Fig.12/4: Practical assembly, hydraulic

Сотро	nents	list,
	hydra	aulic

Item no.	Qty.	Description
0Z1	1	Hydraulic power pack, 2 l/min
0Z2, 1Z	2	Pressure gauge
0V	1	Pressure relief valve
1V1	1	4/3-way solenoid valve closed in mid-position
1V2	1	Non-return valve, piloted
1V3	1	One-way flow control valve
1B	1	Pressure switch
1A	1	Cylinder, 16/10/200
2V1	1	4/2-way solenoid valve
2V2	1	Non-return valve, 5 bar
2M	1	Hydraulic motor, 8 l/min
-	5	Branch tee
-	12	Hose line with quick-release coupling, 600 and 1000

The following settings must be made:

Pump safety valve	0Z1	to	6 MPa (60 bar)
Pressure relief valve	0V	to	5 MPa (50 bar)
Pressure switch	1B	to	2.5 MPa (25 bar)

Fig.12/5 Practical assembly, hydraulic

S1 = START pushbutton S2 = RETURN pushbutton B1 = Pressure switch

Components list, electrical

1	Relay, 3-fold
1	Signal input unit, electrical
1	Indicator and distributor panel, electrical
1	Cable set, universal with safety plugs
1	Electrical power supply unit, 24V
-	

Description

Qty.

_

C-60

Lifting device for packages

Components			Time
			Step
Description	Code	Status	
START pushbutton	S	ON	-⊕ s
Cylinder	1A	2	152
		1	
4/3-way valve	1Y1	а	
		0	
	1Y2	b	
Cylinder	2A	2	2S2
		1	251
4/2-way valve	2Y	а	
		b	
S = S 1S1, 1S2, 2S1, 2S2 = Li	TART pus mit switch	shbutton nes	

Fig.13/1: Function diagram

C-62

C-63 Solution 13

Fig.13/3: Circuit diagram, electrical

S = *START* pushbutton 1*S*1, 1*S*2 = Limit switches 2*S*1, 2*S*2 = Limit switches

Solution description When the START pushbutton S is pressed, the relay K1 is energised and latches. The normally-open contact of K1 in current path 9 energises the solenoid coil 1Y1 of the 4/3-way valve. This causes the piston rod of cylinder 1A to advance until it reaches the limit switch 1S2.

1S2 energises the relay K2 as long as cylinder 1A is advanced. The normally-open contact of K2 in current path 10 energises the solenoid coil 2Y of the 4/2-way valve and the piston rod of cylinder 2A advances until it reaches the limit switch 2S2 at its end position.

2S2 energises K3, whose normally-closed contacts in current paths 1 and 3 de-energise the relays K1 and K2. 2S2 thus cancels the latching contacts K1 for 1Y1 and K2 for 2Y, while energising 1Y2. 1Y2 causes the 4/3-way valve to reverse, and the piston rod of cylinder 1A retracts.

Due to the fact that 2Y has become de-energised, the 4/2-way valve is reversed by spring force and the piston rod of cylinder 2A also retracts. Only after both piston rods have reached their retracted end positions is 1Y2 de-energised, and the 4/3-way valve is brought into its mid-position by spring force.

 Components list hydraulic

	_		_
The followin	a settinas	must be	made:

Item no.

0Z1

0Z2

0V

1V1

1V2, 1V3

1A, 2A

2V1

-

-

Qty.

1

1

1

1

2

2

1

4

12

Description

Pressure gauge

Pressure relief valve

Cylinder, 16/10/200

Branch tee

4/2-way solenoid valve

One-way flow control valve

Hydraulic power pack, 2 l/min

4/3-way solenoid valve closed in mid-position

Hose line with quick-release coupling, 600 and 1000

Pump safety valve	0Z1	to 6 MPa (60 bar)
Pressure relief valve	0V	to 4 MPa (40 bar)
One-way flow control valve	1V2	as desired

Qty.	Description
1	Relay, 3-fold
1	Signal input unit, electrical
1	Indicator and distributor panel, electrical
2	Limit switch, electrical, actuated from the right
2	Limit switch, electrical, actuated from the left
1	Cable set, universal with safety plugs
1	Electrical power supply unit, 24V

Components list, electrical

C-66

Solution 13

Fig.13/5 Practical assembly, hydraulic

S = START-pushbutton 1S1, 1S2 = Limit switches 2S1, 2S2 = Limit switches

