updated example

pull/2/head
Juan Jimeno 2018-11-23 01:11:13 +08:00
parent a58d1f8ffb
commit 45994bb785
1 changed files with 45 additions and 41 deletions

View File

@ -27,63 +27,67 @@
#include "Kinematics.h" #include "Kinematics.h"
/*Kinematics(int motor_max_rpm, float wheel_diameter, float base_width, int pwm_bits) #define MOTOR_MAX_RPM 90 // motor's maximum rpm
motor_max_rpm = motor's maximum rpm #define WHEEL_DIAMETER 0.2 // robot's wheel diameter expressed in meters
wheel_diameter = robot's wheel diameter expressed in meters #define FR_WHEEL_DISTANCE 0.6 // distance between front wheel and rear wheel
base_width = distance between two wheels expressed in meters #define LR_WHEEL_DISTANCE 0.5 // distance between left wheel and right wheel
pwm_bits = microcontroller's PWM pin resolution. Arduino Uno/Mega Teensy is using 8 bits(0-255) #define PWM_BITS 8 // microcontroller's PWM pin resolution. Arduino Uno/Mega Teensy is using 8 bits(0-255)
*/
Kinematics kinematics(90, 0.2, 0.5, 8); Kinematics kinematics(MOTOR_MAX_RPM, WHEEL_DIAMETER, FR_WHEEL_DISTANCE, LR_WHEEL_DISTANCE, PWM_BITS);
void setup() void setup()
{ {
Serial.begin(9600); Serial.begin(9600);
} }
void loop() void loop()
{ {
Kinematics::output rpm; Kinematics::output rpm;
/*kinematics.getRPM(linear_x, linear_y, angular_z); //simulated required velocities
linear_x = target linear velocity in x axis (right hand rule) float linear_vel_x = 1; // 1 m/s
linear_y = target linear velocity in y axis (right hand rule) float linear_vel_y = 0; // 0 m/s
angular_z = target angular velocity in z axis (right hand rule) float angular_vel_z = 1; // 1 m/s
*/
//target velocities
float linear_vel_x = 1;
float linear_vel_y = 0;
float angular_vel_z = 1;
rpm = kinematics.getRPM(linear_vel_x, linear_vel_y, angular_vel_z);
Serial.print(" FRONT LEFT MOTOR: "); //given the required velocities for the robot, you can calculate the rpm required for each motor
Serial.print(rpm.motor1); rpm = kinematics.getRPM(linear_vel_x, linear_vel_y, angular_vel_z);
Serial.print(" FRONT RIGHT MOTOR: "); Serial.print(" FRONT LEFT MOTOR: ");
Serial.print(rpm.motor2); // Assuming you have an encoder for each wheel, you can pass this RPM value to a PID controller
// as a setpoint and your encoder data as a feedback.
Serial.print(rpm.motor1);
Serial.print(" REAR LEFT MOTOR: "); Serial.print(" FRONT RIGHT MOTOR: ");
Serial.print(rpm.motor3); Serial.print(rpm.motor2);
Serial.print(" REAR RIGHT MOTOR: "); Serial.print(" REAR LEFT MOTOR: ");
Serial.println(rpm.motor4); Serial.print(rpm.motor3);
delay(5000); Serial.print(" REAR RIGHT MOTOR: ");
Serial.println(rpm.motor4);
delay(5000);
int motor1_feedback = rpm.motor1;//in rpm // This is a simulated feedback from each motor. We'll just pass the calculated rpm above for demo's sake.
int motor2_feedback = rpm.motor2; //in rpm // In a live robot, these should be replaced with real RPM values derived from encoder.
int motor3_feedback = rpm.motor3; //in rpm int motor1_feedback = rpm.motor1; //in rpm
int motor4_feedback = rpm.motor4; //in rpm int motor2_feedback = rpm.motor2; //in rpm
int motor3_feedback = rpm.motor3; //in rpm
int motor4_feedback = rpm.motor4; //in rpm
Kinematics::velocities vel; Kinematics::velocities vel;
vel = kinematics.getVelocities(motor1_feedback, motor2_feedback, motor3_feedback, motor4_feedback);
Serial.print(" VEL X: ");
Serial.print(vel.linear_x, 4);
Serial.print(" VEL_Y: "); // Now given the RPM from each wheel, you can calculate the linear and angular velocity of the robot.
Serial.print(vel.linear_y, 4); // This is useful if you want to create an odometry data (dead reckoning)
vel = kinematics.getVelocities(motor1_feedback, motor2_feedback, motor3_feedback, motor4_feedback);
Serial.print(" VEL X: ");
Serial.print(vel.linear_x, 4);
Serial.print(" ANGULAR_Z: "); Serial.print(" VEL_Y: ");
Serial.println(vel.angular_z, 4); Serial.print(vel.linear_y, 4);
Serial.println("");
Serial.print(" ANGULAR_Z: ");
Serial.println(vel.angular_z, 4);
Serial.println("");
} }