336 lines
11 KiB
Python
336 lines
11 KiB
Python
#!/usr/bin/python
|
|
|
|
# AUTHOR:
|
|
# Carlosgs (http://carlosgs.es)
|
|
# LICENSE:
|
|
# Attribution - Share Alike - Creative Commons (http://creativecommons.org/licenses/by-sa/3.0/)
|
|
#
|
|
# DISCLAIMER:
|
|
# This software is provided "as is", and you use the software at your own risk. Under no
|
|
# circumstances shall Carlosgs be liable for direct, indirect, special, incidental, or
|
|
# consequential damages resulting from the use, misuse, or inability to use this software,
|
|
# even if Carlosgs has been advised of the possibility of such damages.
|
|
|
|
# Begin configuration
|
|
BAUDRATE = 115200
|
|
DEVICE = "/dev/ttyUSB0"
|
|
Emulate = 0
|
|
# End configuration
|
|
|
|
# Begin modules
|
|
import sys
|
|
from datetime import datetime
|
|
import time
|
|
|
|
import numpy as np
|
|
from scipy import interpolate
|
|
import matplotlib.pyplot as plt
|
|
from matplotlib import cm
|
|
|
|
sys.path.append("../CycloneHost")
|
|
import GcodeViewer as gcv
|
|
import CycloneHost as cy
|
|
from helper import *
|
|
# End modules
|
|
|
|
filePath = "../GcodeGenerators/pyGerber2Gcode_CUI/out/"
|
|
fileName = "4LDR_Board" # sys.argv[1]
|
|
|
|
|
|
|
|
|
|
|
|
def pltShowNonBlocking():
|
|
#plt.ion() # Enable real-time plotting to avoid blocking behaviour for plt.show()
|
|
plt.draw()
|
|
#plt.ioff() # Disable real-time plotting
|
|
|
|
def pltNewFig():
|
|
fig = plt.figure()
|
|
#plt.draw()
|
|
return fig
|
|
|
|
def pltSetFig(fig):
|
|
plt.figure(fig.number)
|
|
|
|
def pltRefresh(fig):
|
|
fig.canvas.draw()
|
|
|
|
def pltShow():
|
|
#plt.ion() # IMPORTANT: Enable real-time plotting
|
|
plt.draw()
|
|
#plt.ioff()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def probingResults(): # quick and dirty temporal code
|
|
global Z_workbed_surface, x_points, y_points
|
|
# x_points = [0.0, 12.272727272727273, 24.545454545454547, 36.81818181818182, 49.09090909090909, 61.36363636363637, 73.63636363636364, 85.9090909090909, 98.18181818181819, 110.45454545454547, 122.72727272727273, 135.0]
|
|
# y_points = [0.0, 16.8, 33.6, 50.400000000000006, 67.2, 84.0]
|
|
# probe_result = [[0.0, 0.2, 0.4, 0.53, 0.58, 0.6, 0.56, 0.53, 0.5, 0.44, 0.33, 0.2], [-0.03, 0.07, 0.16, 0.26, 0.32, 0.33, 0.33, 0.33, 0.29, 0.23, 0.15, 0.05], [-0.07, 0.0, 0.05, 0.12, 0.16, 0.2, 0.2, 0.22, 0.2, 0.16, 0.08, 0.0], [-0.07, -0.03, 0.04, 0.11, 0.15, 0.19, 0.2, 0.22, 0.22, 0.19, 0.11, 0.04], [0.0, 0.04, 0.08, 0.19, 0.23, 0.29, 0.33, 0.36, 0.37, 0.32, 0.2, 0.11], [0.13, 0.2, 0.27, 0.37, 0.44, 0.51, 0.55, 0.61, 0.64, 0.55, 0.41, 0.22]]
|
|
# duration = 346.076061
|
|
|
|
# DTMF board
|
|
# x_points = [0.0, 17.5, 35.0, 52.5, 70.0]
|
|
# y_points = [0.0, 13.333333333333334, 26.666666666666668, 40.0]
|
|
# probe_result = [[0.0, 0.28000000000000114, 0.490000000000002, 0.5599999999999987, 0.5199999999999996], [0.0, 0.1700000000000017, 0.33000000000000185, 0.41000000000000014, 0.41000000000000014], [-0.030000000000001137, 0.08999999999999986, 0.21999999999999886, 0.3000000000000007, 0.33000000000000185], [-0.08999999999999986, 0.03999999999999915, 0.16000000000000014, 0.26000000000000156, 0.28999999999999915]]
|
|
# duration = 102.808573
|
|
|
|
# x_points = [70.0, 87.5, 105.0, 122.5, 140.0]
|
|
# y_points = [0.0, 13.333333333333334, 26.666666666666668, 40.0]
|
|
# probe_result = [[0.0, -0.15000000000000213, -0.28000000000000114, -0.38000000000000256, -0.4299999999999997], [-0.08000000000000185, -0.20000000000000284, -0.33999999999999986, -0.4400000000000013, -0.490000000000002], [-0.15000000000000213, -0.26000000000000156, -0.370000000000001, -0.46000000000000085, -0.5100000000000016], [-0.21000000000000085, -0.26000000000000156, -0.35999999999999943, -0.4400000000000013, -0.490000000000002]]
|
|
# duration = 105.028261
|
|
|
|
# x_points = [0.0, 20.0, 40.0, 60.0, 80.0]
|
|
# y_points = [0.0, 15.0, 30.0, 45.0, 60.0]
|
|
# probe_result = [[0.0, 0.259999999999998, 0.620000000000001, 0.75, 0.6799999999999997], [-0.019999999999999574, 0.21999999999999886, 0.4400000000000013, 0.5399999999999991, 0.5], [-0.05999999999999872, 0.19000000000000128, 0.370000000000001, 0.46000000000000085, 0.4299999999999997], [-0.05999999999999872, 0.16999999999999815, 0.34999999999999787, 0.4400000000000013, 0.4299999999999997], [-0.05000000000000071, 0.21000000000000085, 0.3999999999999986, 0.509999999999998, 0.509999999999998]]
|
|
# duration = 123.918331
|
|
|
|
x_points = [85.0, 91.25, 97.5, 103.75, 110.0]
|
|
y_points = [0.0, 6.25, 12.5, 18.75, 25.0]
|
|
probe_result = [[0.0, -0.11999999999999744, -0.2099999999999973, -0.28999999999999915, -0.379999999999999], [-0.05999999999999872, -0.16999999999999815, -0.2699999999999996, -0.34999999999999787, -0.4299999999999997], [-0.11999999999999744, -0.21999999999999886, -0.3099999999999987, -0.389999999999997, -0.46999999999999886], [-0.1599999999999966, -0.259999999999998, -0.34999999999999787, -0.41999999999999815, -0.5], [-0.18999999999999773, -0.2799999999999976, -0.35999999999999943, -0.4299999999999997, -0.509999999999998]]
|
|
duration = 97.203638
|
|
|
|
# Show our grid
|
|
# print "--- Probing results ---"
|
|
# print "-> X points:", x_points
|
|
# print "-> Y points:", y_points
|
|
# print "-> Grid:", probe_result
|
|
# print "-> Duration:", duration
|
|
|
|
# Must be converted into arrays to use scipy
|
|
x_points = np.array(x_points)
|
|
y_points = np.array(y_points)
|
|
probe_result = np.array(probe_result)
|
|
|
|
# plt.figure()
|
|
# plt.pcolor(x_points, y_points, probe_result)
|
|
# plt.colorbar()
|
|
# plt.title("Z probing results [mm]")
|
|
# plt.axis('equal') # 1:1 aspect ratio
|
|
# pltShowNonBlocking()
|
|
|
|
# Interpolation
|
|
Z_workbed_surface = interpolate.RectBivariateSpline(y_points, x_points, probe_result)
|
|
|
|
x_points = np.linspace(min(x_points),max(x_points),50)
|
|
y_points = np.linspace(min(y_points),max(y_points),50)
|
|
|
|
z_points = Z_workbed_surface(y_points,x_points)
|
|
|
|
# plt.figure()
|
|
plt.hold(True)
|
|
|
|
z_cf = plt.pcolor(x_points, y_points, z_points, alpha=0.2, cmap=cm.copper, edgecolors='k', linewidths=0) # Show Z probing height, with a light-tone colormap
|
|
plt.colorbar()
|
|
# plt.title("Z probing results (interpolated) [mm]")
|
|
plt.axis('equal') # 1:1 aspect ratio
|
|
# pltShowNonBlocking()
|
|
|
|
def getZoffset(x,y):
|
|
return Z_workbed_surface(y,x)[0][0]
|
|
|
|
|
|
|
|
plt.ion() # IMPORTANT: Enable real-time plotting
|
|
|
|
gcodeviewer = pltNewFig() # Define a new figure, this doesnt open a window by itself (real-time plotting disabled)
|
|
|
|
probingResults()
|
|
print "Must be zero:",floats(getZoffset(0,0))
|
|
|
|
# Display the Gcode that is going to be etched
|
|
(etch_moves, travel_moves, gcode_minXY_global, gcode_maxXY_global) = gcv.view(filePath,fileName,showEdge=1)
|
|
#(etch_moves, travel_moves) = gcv.view(filePath,fileName,showEtch1=1)
|
|
#(etch_moves, travel_moves) = gcv.view(filePath,fileName,showEtch2=1)
|
|
#(etch_moves, travel_moves) = gcv.view(filePath,fileName,showDrill=1)
|
|
#(etch_moves, travel_moves) = gcv.view(filePath,fileName,showEdge=1)
|
|
|
|
# Show delimiter rectangle
|
|
x_dat = [gcode_minXY_global[0],gcode_minXY_global[0],gcode_maxXY_global[0],gcode_maxXY_global[0],gcode_minXY_global[0]]
|
|
y_dat = [gcode_minXY_global[1],gcode_maxXY_global[1],gcode_maxXY_global[1],gcode_minXY_global[1],gcode_minXY_global[1]]
|
|
plt.plot(x_dat,y_dat)
|
|
|
|
pltRefresh(gcodeviewer) # Draw the figure contents, still no window
|
|
pltShow() # Open the window showing our figure
|
|
|
|
#plt.show() # THIS SHOULD BE COMMENTED, USE FOR DEBUG
|
|
|
|
toolPos_point = []
|
|
|
|
def toolPos_draw(x, y, etching=0):
|
|
if etching:
|
|
color = 'r'
|
|
else:
|
|
color = 'g'
|
|
toolPos_point.set_data(x, y)
|
|
toolPos_point.set_color(color)
|
|
gcodeviewer.canvas.draw()
|
|
|
|
toolRefreshSteps = 1
|
|
toolRefresh = 0
|
|
def toolPos_refresh(x, y, etching=0):
|
|
global toolRefresh
|
|
if toolRefresh >= toolRefreshSteps:
|
|
toolPos_draw(toolPos_X, toolPos_Y, etching)
|
|
toolRefresh = 0
|
|
toolRefresh = toolRefresh + 1
|
|
|
|
def drawTool(x, y):
|
|
global toolPos_point
|
|
pltSetFig(gcodeviewer)
|
|
toolPos_point, = plt.plot(0, 0, markersize=12, c='g', marker='x')
|
|
pltShowNonBlocking()
|
|
|
|
F_slowMove = 200 # Move speed [mm/min]
|
|
F_fastMove = 700
|
|
|
|
F_drillMove = 50
|
|
F_edgeMove = 25
|
|
F_etchMove = 100
|
|
|
|
|
|
cy.connect(BAUDRATE, DEVICE, Emulate)
|
|
|
|
cy.sendCommand("G90\n") # Set absolute positioning
|
|
|
|
cy.homeZXY() # Home all the axis
|
|
|
|
drawTool(10, 20) # Show a marker on the gcode plot
|
|
|
|
|
|
# Move to the origin of the grid
|
|
cy.moveXY(x_points[0], y_points[0], F_fastMove)
|
|
|
|
|
|
# Warning: Do not lower too much or you will potentially cause damage!
|
|
initial_Z_lowering_distance = -10
|
|
cy.moveZrelSafe(initial_Z_lowering_distance,F_slowMove/2) # Move Z towards the PCB (saves some probing time for the first coord)
|
|
|
|
Z_origin_offset = cy.probeZ()
|
|
print "Z offset:", Z_origin_offset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
toolPos_X = 0
|
|
toolPos_Y = 0
|
|
toolPos_Z = 0
|
|
toolPos_F = F_fastMove
|
|
|
|
X_dest = 0
|
|
Y_dest = 0
|
|
Z_dest = 0
|
|
F_dest = F_fastMove
|
|
|
|
cy.moveZrelSafe(5,F_slowMove)
|
|
toolPos_Z = 5
|
|
|
|
pltSetFig(gcodeviewer)
|
|
|
|
Zlift = 1.0
|
|
|
|
Z_manual_offset = -0.01
|
|
|
|
maxDistance = 1**2 # [mm^2] 2mm (longer moves will be split to regulate Z)
|
|
minDistance = 0.001**2 # [mm^2] 0.001mm is the smallest distance that will be sent
|
|
|
|
def splitLongEtchMove(distance):
|
|
global toolPos_X, toolPos_Y, toolPos_Z, toolPos_F, X_dest, Y_dest, Z_dest, F_dest
|
|
|
|
X_dest_tmp = toolPos_X
|
|
Y_dest_tmp = toolPos_Y
|
|
Z_dest_tmp = toolPos_Z
|
|
F_dest_tmp = toolPos_Z
|
|
|
|
#distance = distance**0.5 # [mm]
|
|
N_steps = int((distance/maxDistance)**0.5) # **must be** >= 1
|
|
|
|
print "Splitting", distance**0.5, "mm segment into", N_steps, "steps"
|
|
|
|
# print "Orig:", toolPos_X, toolPos_Y, toolPos_Z, "Dest:", X_dest, Y_dest, Z_dest
|
|
|
|
X_step = (X_dest-toolPos_X)/float(N_steps)
|
|
Y_step = (Y_dest-toolPos_Y)/float(N_steps)
|
|
Z_step = (Z_dest-toolPos_Z)/float(N_steps)
|
|
F_step = (F_dest-toolPos_F)/float(N_steps)
|
|
|
|
for i in range(N_steps) :
|
|
X_dest_tmp = toolPos_X + X_step
|
|
Y_dest_tmp = toolPos_Y + Y_step
|
|
Z_dest_tmp = toolPos_Z + Z_step
|
|
F_dest_tmp = toolPos_F + F_step
|
|
|
|
Z_real = Z_dest_tmp+Z_origin_offset+getZoffset(X_dest_tmp, Y_dest_tmp)+Z_manual_offset
|
|
cy.moveXYZ(X_dest_tmp, Y_dest_tmp, Z_real, F_dest_tmp)
|
|
toolPos_refresh(X_dest_tmp, Y_dest_tmp, etching=1)
|
|
|
|
# print "Move:",X_dest_tmp, Y_dest_tmp, Z_dest_tmp
|
|
|
|
toolPos_X = X_dest_tmp
|
|
toolPos_Y = Y_dest_tmp
|
|
toolPos_Z = Z_dest_tmp
|
|
toolPos_F = F_dest_tmp
|
|
|
|
|
|
raw_input("Turn on the spindle and press enter to begin...")
|
|
|
|
for path in etch_moves :
|
|
toolRefresh = 0
|
|
toolPos_draw(toolPos_X, toolPos_Y, etching=0)
|
|
cy.moveZ(Z_origin_offset+getZoffset(X_dest, Y_dest)+Z_manual_offset+Zlift,F_fastMove) # Raise and move to next point
|
|
X_dest = path[0][0]
|
|
Y_dest = path[0][1]
|
|
F_dest = F_fastMove
|
|
print " Traveling to:", str([X_dest, Y_dest]), "at Z:", Z_manual_offset+Zlift
|
|
cy.moveXY(X_dest, Y_dest, F_dest)
|
|
toolPos_draw(X_dest, Y_dest, etching=0)
|
|
Z_dest = path[0][2]
|
|
if Z_dest > 0:
|
|
F_dest = F_slowMove
|
|
else:
|
|
F_dest = path[0][3] # We set the original speed if it is etching/drill
|
|
cy.moveZ(Z_dest+Z_origin_offset+getZoffset(X_dest, Y_dest)+Z_manual_offset,F_dest)
|
|
# print "Speed:",F_dest
|
|
print " Etching at Z:",Z_dest+Z_manual_offset
|
|
toolPos_X = X_dest
|
|
toolPos_Y = Y_dest
|
|
toolPos_Z = Z_dest # Not sure..
|
|
toolPos_F = F_dest
|
|
|
|
# print path
|
|
|
|
for coord in path[1:] :
|
|
X_dest = coord[0]
|
|
Y_dest = coord[1]
|
|
Z_dest = coord[2]
|
|
F_dest = coord[3]
|
|
|
|
distance = (X_dest-toolPos_X)**2+(Y_dest-toolPos_Y)**2
|
|
if distance >= maxDistance :
|
|
splitLongEtchMove(distance)
|
|
if distance < minDistance and (Z_dest-toolPos_Z)**2 < 0.001**2 : # Make sure it is not a Z movement
|
|
print "Ignoring", distance**0.5, "mm segment!"
|
|
continue
|
|
Z_real = Z_dest+Z_origin_offset+getZoffset(X_dest, Y_dest)+Z_manual_offset
|
|
cy.moveXYZ(X_dest, Y_dest, Z_real, F_dest)
|
|
# print "Coords: Speed:",F_dest
|
|
toolPos_refresh(X_dest, Y_dest, etching=1)
|
|
|
|
toolPos_X = X_dest
|
|
toolPos_Y = Y_dest
|
|
toolPos_Z = Z_dest
|
|
toolPos_F = F_dest
|
|
|
|
cy.homeZXY()
|
|
cy.close() # Close the serial port connection
|
|
|
|
raw_input("Done. Press enter to exit...")
|
|
|