263 lines
8.3 KiB
Python
263 lines
8.3 KiB
Python
#!/usr/bin/python
|
|
|
|
# AUTHOR:
|
|
# Carlosgs (http://carlosgs.es)
|
|
# LICENSE:
|
|
# Attribution - Share Alike - Creative Commons (http://creativecommons.org/licenses/by-sa/3.0/)
|
|
#
|
|
# DISCLAIMER:
|
|
# This software is provided "as is", and you use the software at your own risk. Under no
|
|
# circumstances shall Carlosgs be liable for direct, indirect, special, incidental, or
|
|
# consequential damages resulting from the use, misuse, or inability to use this software,
|
|
# even if Carlosgs has been advised of the possibility of such damages.
|
|
|
|
# Begin configuration
|
|
from configuration import * # load settings
|
|
# End configuration
|
|
|
|
# Begin modules
|
|
import sys
|
|
from datetime import datetime
|
|
import time
|
|
|
|
import numpy as np
|
|
from scipy import interpolate
|
|
import matplotlib.pyplot as plt
|
|
from matplotlib import cm
|
|
|
|
from misc import *
|
|
|
|
import CycloneHost.GcodeViewer as gcv
|
|
import CycloneHost.Controller as cy
|
|
from CycloneHost.helper import *
|
|
# End modules
|
|
|
|
|
|
def probingResults(): # quick and dirty temporal code
|
|
global Z_workbed_surface, x_points, y_points
|
|
|
|
# Load the Z data file
|
|
Z_probing_data = loadFromFile(Z_PROBING_FILE)
|
|
|
|
x_points = Z_probing_data['x_points']
|
|
y_points = Z_probing_data['y_points']
|
|
probe_result = Z_probing_data['probe_result']
|
|
probe_duration = Z_probing_data['probe_duration']
|
|
|
|
# Must be converted into arrays to use scipy
|
|
x_points = np.array(x_points)
|
|
y_points = np.array(y_points)
|
|
probe_result = np.array(probe_result)
|
|
|
|
# Setup interpolation object
|
|
Z_workbed_surface = interpolate.RectBivariateSpline(y_points, x_points, probe_result)
|
|
|
|
# Evaluate the interpolation in a 50x50 grid for display
|
|
x_points = np.linspace(min(x_points),max(x_points),50)
|
|
y_points = np.linspace(min(y_points),max(y_points),50)
|
|
z_points = Z_workbed_surface(y_points,x_points)
|
|
|
|
# This will show the Z probing result behind the actual PCB layout, for reference
|
|
plt.hold(True)
|
|
z_cf = plt.pcolor(x_points, y_points, z_points, alpha=0.2, cmap=cm.copper, edgecolors='k', linewidths=0) # Show Z probing height, with a light-tone colormap
|
|
plt.colorbar()
|
|
plt.axis('equal') # 1:1 aspect ratio
|
|
|
|
def getZoffset(x,y): # Returns the offset using interpolation
|
|
return Z_workbed_surface(y,x)[0][0]
|
|
|
|
|
|
|
|
plt.ion() # IMPORTANT: Enable real-time plotting
|
|
|
|
gcodeviewer = pltNewFig() # Define a new figure, this doesnt open a window by itself (real-time plotting disabled)
|
|
|
|
# Load the probing results (this will plot the copper level in the background too)
|
|
probingResults()
|
|
#print("Must be zero, otherwise the interpolation is wrong!: " + floats(getZoffset(0,0)))
|
|
|
|
# Display the Gcode that is going to be etched
|
|
(etch_moves, travel_moves, gcode_minXY, gcode_maxXY) = gcv.view(filePath,fileName,0,showEtch,showEtch2,showEtch3,showDrill,showEdge)
|
|
#(etch_moves, travel_moves) = gcv.view(filePath,fileName,showEtch1=1)
|
|
#(etch_moves, travel_moves) = gcv.view(filePath,fileName,showEtch2=1)
|
|
#(etch_moves, travel_moves) = gcv.view(filePath,fileName,showDrill=1)
|
|
#(etch_moves, travel_moves) = gcv.view(filePath,fileName,showEdge=1)
|
|
|
|
(boardSizeX,boardSizeY,gcode_minXY_global, gcode_maxXY_global) = gcv.boardSize(filePath,fileName)
|
|
|
|
# Show delimiter rectangle
|
|
#x_dat = [gcode_minXY_global[0],gcode_minXY_global[0],gcode_maxXY_global[0],gcode_maxXY_global[0],gcode_minXY_global[0]]
|
|
#y_dat = [gcode_minXY_global[1],gcode_maxXY_global[1],gcode_maxXY_global[1],gcode_minXY_global[1],gcode_minXY_global[1]]
|
|
#plt.plot(x_dat,y_dat)
|
|
|
|
pltRefresh(gcodeviewer) # Draw the figure contents, still no window
|
|
pltShow() # Open the window showing our figure
|
|
|
|
#plt.show() # THIS SHOULD BE COMMENTED, USE FOR DEBUG
|
|
|
|
toolPos_point = []
|
|
|
|
def toolPos_draw(x, y, etching=0):
|
|
if etching:
|
|
color = 'r'
|
|
else:
|
|
color = 'g'
|
|
toolPos_point.set_data(x, y)
|
|
toolPos_point.set_color(color)
|
|
gcodeviewer.canvas.draw()
|
|
|
|
toolRefreshSteps = 1
|
|
toolRefresh = 0
|
|
def toolPos_refresh(x, y, etching=0):
|
|
global toolRefresh
|
|
if toolRefresh >= toolRefreshSteps:
|
|
toolPos_draw(toolPos_X, toolPos_Y, etching)
|
|
toolRefresh = 0
|
|
toolRefresh = toolRefresh + 1
|
|
|
|
def drawTool(x, y):
|
|
global toolPos_point
|
|
pltSetFig(gcodeviewer)
|
|
toolPos_point, = plt.plot(0, 0, markersize=12, c='g', marker='x')
|
|
pltShowNonBlocking()
|
|
|
|
|
|
cy.connect(BAUDRATE, DEVICE, Emulate)
|
|
|
|
cy.sendCommand("G90\n") # Set absolute positioning
|
|
|
|
cy.homeZXY() # Home all the axis
|
|
|
|
drawTool(10, 20) # Show a marker on the gcode plot
|
|
|
|
|
|
# Move to the origin of the grid
|
|
cy.moveXY(x_points[0], y_points[0], F_fastMove)
|
|
|
|
|
|
# Warning: Do not lower too much or you will potentially cause damage!
|
|
initial_Z_lowering_distance = -10
|
|
cy.moveZrelSafe(initial_Z_lowering_distance,F_slowMove) # Move Z towards the PCB (saves some probing time for the first coord)
|
|
|
|
Z_origin_offset = cy.probeZ()
|
|
print("Z offset: " + str(Z_origin_offset) )
|
|
|
|
|
|
toolPos_X = 0
|
|
toolPos_Y = 0
|
|
toolPos_Z = 0
|
|
toolPos_F = F_fastMove
|
|
|
|
X_dest = 0
|
|
Y_dest = 0
|
|
Z_dest = 0
|
|
F_dest = F_fastMove
|
|
|
|
# Move Z up 5mm, once we have the Z=0 reference. We will then pause to allow user remove electrodes and turn on the spindle
|
|
cy.moveZrelSafe(5,F_slowMove)
|
|
toolPos_Z = 5
|
|
|
|
pltSetFig(gcodeviewer)
|
|
|
|
def splitLongEtchMove(distance):
|
|
global toolPos_X, toolPos_Y, toolPos_Z, toolPos_F, X_dest, Y_dest, Z_dest, F_dest
|
|
|
|
X_dest_tmp = toolPos_X
|
|
Y_dest_tmp = toolPos_Y
|
|
Z_dest_tmp = toolPos_Z
|
|
F_dest_tmp = toolPos_Z
|
|
|
|
#distance = distance**0.5 # [mm]
|
|
N_steps = int((distance/maxDistance)**0.5) # **must be** >= 1
|
|
|
|
print("Splitting " + str(distance**0.5) + "mm segment into " + str(N_steps) + " steps")
|
|
|
|
# print("Orig: " + (toolPos_X,toolPos_Y,toolPos_Z) + " Dest: " + (X_dest, Y_dest, Z_dest))
|
|
|
|
X_step = (X_dest-toolPos_X)/float(N_steps)
|
|
Y_step = (Y_dest-toolPos_Y)/float(N_steps)
|
|
Z_step = (Z_dest-toolPos_Z)/float(N_steps)
|
|
F_step = (F_dest-toolPos_F)/float(N_steps)
|
|
|
|
for i in range(N_steps) :
|
|
X_dest_tmp = toolPos_X + X_step
|
|
Y_dest_tmp = toolPos_Y + Y_step
|
|
Z_dest_tmp = toolPos_Z + Z_step
|
|
F_dest_tmp = toolPos_F + F_step
|
|
|
|
Z_real = Z_dest_tmp+Z_origin_offset+getZoffset(X_dest_tmp, Y_dest_tmp)+Z_global_offset
|
|
cy.moveXYZ(X_dest_tmp, Y_dest_tmp, Z_real, F_dest_tmp)
|
|
toolPos_refresh(X_dest_tmp, Y_dest_tmp, etching=1)
|
|
|
|
# print("Move: " + (X_dest_tmp, Y_dest_tmp, Z_dest_tmp) )
|
|
|
|
toolPos_X = X_dest_tmp
|
|
toolPos_Y = Y_dest_tmp
|
|
toolPos_Z = Z_dest_tmp
|
|
toolPos_F = F_dest_tmp
|
|
|
|
|
|
print("Turn on the spindle and press enter to begin...")
|
|
val = sys.stdin.readline()
|
|
|
|
def doPath(X_offset=0, Y_offset=0):
|
|
global toolPos_X, toolPos_Y, toolPos_Z, toolPos_F, X_dest, Y_dest, Z_dest, F_dest
|
|
for path in etch_moves :
|
|
toolRefresh = 0
|
|
toolPos_draw(toolPos_X, toolPos_Y, etching=0)
|
|
cy.moveZ(Z_origin_offset+getZoffset(X_dest, Y_dest)+Z_global_offset+Zlift_milling,F_fastMove) # Raise and move to next point
|
|
X_dest = path[0][0]+X_offset
|
|
Y_dest = path[0][1]+Y_offset
|
|
F_dest = F_fastMove
|
|
print(" Traveling to: " + str([X_dest, Y_dest]) + " at Z:" + str(Z_global_offset+Zlift_milling) )
|
|
cy.moveXY(X_dest, Y_dest, F_dest)
|
|
toolPos_draw(X_dest, Y_dest, etching=0)
|
|
Z_dest = path[0][2]
|
|
if Z_dest > 0:
|
|
F_dest = F_slowMove
|
|
else:
|
|
F_dest = path[0][3] # We set the original speed if it is etching/drill
|
|
cy.moveZ(Z_dest+Z_origin_offset+getZoffset(X_dest, Y_dest)+Z_global_offset,F_dest)
|
|
# print("Speed:",F_dest)
|
|
print(" Etching at Z: " + str(Z_dest+Z_global_offset) )
|
|
toolPos_X = X_dest
|
|
toolPos_Y = Y_dest
|
|
toolPos_Z = Z_dest # Not sure..
|
|
toolPos_F = F_dest
|
|
|
|
# print(path)
|
|
|
|
for coord in path[1:] :
|
|
X_dest = coord[0]+X_offset
|
|
Y_dest = coord[1]+Y_offset
|
|
Z_dest = coord[2]
|
|
F_dest = coord[3]
|
|
|
|
distance = (X_dest-toolPos_X)**2+(Y_dest-toolPos_Y)**2
|
|
if distance >= maxDistance :
|
|
splitLongEtchMove(distance)
|
|
if distance < minDistance and (Z_dest-toolPos_Z)**2 < 0.001**2 : # Make sure it is not a Z movement
|
|
print("Ignoring " + str(distance**0.5) + "mm segment!")
|
|
continue
|
|
Z_real = Z_dest+Z_origin_offset+getZoffset(X_dest, Y_dest)+Z_global_offset
|
|
cy.moveXYZ(X_dest, Y_dest, Z_real, F_dest)
|
|
# print("Coords: Speed: " + str(F_dest))
|
|
toolPos_refresh(X_dest, Y_dest, etching=1)
|
|
|
|
toolPos_X = X_dest
|
|
toolPos_Y = Y_dest
|
|
toolPos_Z = Z_dest
|
|
toolPos_F = F_dest
|
|
|
|
# Panelizing supported!
|
|
for x_i in range(N_copies_X):
|
|
for y_i in range(N_copies_Y):
|
|
doPath(x_i*(boardSizeX+margin_copies_X), y_i*(boardSizeY+margin_copies_Y))
|
|
|
|
cy.homeZXY() # It is important to send a blocking command in the end
|
|
cy.close() # Close the connection with Cyclone
|
|
|
|
print("Done. Press enter to exit...")
|
|
val = sys.stdin.readline()
|
|
|