// This file is part of Cyclone PCB Factory: an open-source 3D printable CNC machine for PCB manufacture // http://reprap.org/wiki/Cyclone_PCB_Factory // Original author: Carlosgs (http://carlosgs.es) // License: CC BY-SA 4.0 (Attribution-ShareAlike 4.0 International, http://creativecommons.org/licenses/by-sa/4.0/) // Designed with http://www.openscad.org/ // ---------- NOTES FOR A PROPER RENDERING IN OPENSCAD ----------- // First of all, make sure you are using the latest version of OpenScad (>= 2014.05.31) // Then, it is important to change a default setting. Go to: Edit --> Preferences --> Advanced // And increase "Turn off rendering at 2000 elements" to a larger number like 20000 // // If problems persist, you may need to install the MCAD () // and Obiscad () libraries into the /libs directory. // With Git, this can be achieved automatically by running the following command: // git submodule update --init // ------------------------------------------------------------- // ---------- GENERATING THE STL FILES ------------------------ // In OpenScad, it is possible to preview designs (F5 key) or to render them (F6 key) // to be able to export them as STL files ready for 3D printing. // Please note that some parts will only be present in the preview, but not in the // final render. This is normal, as they are used only as a reference and do not need // to be 3D printed. // // The main file that needs to be opened with OpenScad is Cyclone.scad (this document). // From here, it is possible to select most of the parts, using the root modifier (!). // Place it before a function to exclusively render that subtree. When used, for instance, as // !Cyclone_Y_frontFrame(); // it will show only the frontal Y axis frame. Rendering it with F6 will output only // that part, which will be ready to be exported as STL. // // It is also possible to generate larger STL files that contain multiple elements, // and afterwards split them. This can be achieved with a software like Cura, that // also allows easy rotation and positioning of the models for printing. // To split STLs in Cura: right click over the part --> "split into parts" // ------------------------------------------------------------- // Increase the resolution of default shapes $fa = 5; // Minimum angle for fragments [degrees] $fs = 0.5; // Minimum fragment size [mm] // Load necessary libraries use use use use use // Functions for animations. Quick and dirty implementation, will need some cleanup animated_parts_number = 10; animated_timePerPart = 1/animated_parts_number; function animationBump(tbegin,tend,t=$t%1) = ((t >= tbegin) && (t <= tend)) ? (1+sin((t-tbegin)*360/(tend-tbegin)-90)) : 0; function animatePart(n,dist=30,overlap=animated_timePerPart*0.25) = dist*animationBump((n-1)*animated_timePerPart-overlap,n*animated_timePerPart+overlap); // Parameters for the bottom base base_size_X = 304.8 + animatePart(1,overlap=0); base_size_Y = 261.62 + animatePart(2); base_thickness = 8; base_corner_radius = 20; base_corner_res = 0; foot_offset = 25; // Parameters for the axes sizes axes_Xsmooth_rodLen = 250 + animatePart(1,overlap=0); axes_Ysmooth_rodLen = 210 + animatePart(2); axes_Zsmooth_rodLen = 110 + animatePart(3); axes_Xthreaded_rodLen = axes_Xsmooth_rodLen+50; axes_Ythreaded_rodLen = axes_Ysmooth_rodLen-10; axes_Zthreaded_rodLen = 90; axes_Xsmooth_rodD = 8.5 + animatePart(4,dist=5); axes_Ysmooth_rodD = 8.5 + animatePart(4,dist=5); axes_Zsmooth_rodD = 8.2 + animatePart(4,dist=5); axes_Xthreaded_rodD = 8.5 + animatePart(4,dist=5); axes_Ythreaded_rodD = 8.5 + animatePart(4,dist=5); axes_Zthreaded_rodD = 8.5 + animatePart(4,dist=5); // Parameters for the axes reference position // Note: The reference coordinates are centered like this: // Y axis reference is the Y smooth rod end, BACK of RIGHT FRAME // X axis reference is the frontal X smooth rod end, RIGHT FRAME // Z axis reference is the Z threaded rod, at the height of the Z nut, and relative to the X reference axes_Yreference_height = 40 + animatePart(5); axes_Xreference_height = 74 + animatePart(6); // relative to Y reference axes_Zreference_height = -3 + animatePart(7) + animatePart(9); // relative to X reference axes_Xreference_posY = -81-animatePart(8)-animatePart(9); // relative to Y reference. Moves the X axis towards the front of the machine axes_Zreference_posY = 14; // relative to X reference. Positions Z rods between the Y rods axes_Y_threaded_height = 30 + animatePart(5); axes_Ysmooth_separation = 165 + animatePart(1,overlap=0); axes_Xsmooth_separation = 40 + animatePart(9); axes_Zsmooth_separation = 40 + animatePart(10,overlap=0); // Carriage positions (for rendering) axes_Xcarriage_pos = axes_Xsmooth_rodLen/2+sin($t*360)*axes_Xsmooth_rodLen/3; axes_Ycarriage_pos = axes_Ysmooth_rodLen/2+sin($t*360)*axes_Ysmooth_rodLen/4.1; axes_Zcarriage_pos = axes_Zsmooth_rodLen/2+sin($t*360)*axes_Zsmooth_rodLen/8; // Parameters for the workbed Ycarriage_linearBearingSeparation = 50; workbed_size_X = axes_Ysmooth_separation+50; workbed_size_Y = Ycarriage_linearBearingSeparation+70; workbed_thickness = 8+3; workbed_separation_from_Y_smooth_rod = 10; // Part colors blueColor = [0.3,0.6,0.9]; redColor = [0.8,0.3,0.3]; yellowColor = [0.9,0.9,0.1]; blackColor = [0.2,0.2,0.2]; color_movingPart = yellowColor+[0.1,0.1,0.1]; color_stillPart = yellowColor; // Calculations axes_Xreference_posX = (axes_Ysmooth_separation-axes_Xsmooth_rodLen)/2; // relative to Y reference axes_Y_smoothThreaded_verticalSeparation = axes_Yreference_height-axes_Y_threaded_height; axes_ZthreadedReference_posY = axes_Xsmooth_separation-axes_Zreference_posY-axes_Zreference_posY; // Relative to X carriage reference // Activate/Deactivate rendering auxiliary references (LCS axis, etc) draw_references = false; render_DXF_base = false; render_DXF_workbed = false; render_bases_outline = false; // Toggle for rendering outline DXFs DXF_offset = 0.4; // Needed to adjust the tolerance of the laser cutter // Include Cyclone parts include include include include include // This small module is used to select if an object is rendered as a 2D plane or as a 3D object module render_2D_or_3D() { if(render_DXF_base) { offset(delta = DXF_offset) projection(cut = true) children(); } else children(); } // BEGIN ASSEMBLING THE DESIGN render_2D_or_3D() { if(draw_references) %frame(); // Main base for the machine beveledBase([base_size_X,base_size_Y,base_thickness], radius=base_corner_radius, res=base_corner_res, echoPart=true, renderPart=render_bases_outline); // A4 paper sheet for reference color([1,1,1, 0.2]) standard_paperSheet_A4(echoPart=true); // Cyclone foot stands translate([0,0,-base_thickness]) { translate([base_size_X/2-foot_offset,base_size_Y/2-foot_offset]) rubberFoot(echoPart=true); translate([-base_size_X/2+foot_offset,base_size_Y/2-foot_offset]) rubberFoot(echoPart=true); translate([-base_size_X/2+foot_offset,-base_size_Y/2+foot_offset]) rubberFoot(echoPart=true); translate([base_size_X/2-foot_offset,-base_size_Y/2+foot_offset]) rubberFoot(echoPart=true); } // TRANSLATE REFERENCE POSITION to the RIGHT frame, Y smooth rod end translate([-axes_Ysmooth_separation/2,axes_Ysmooth_rodLen/2,axes_Yreference_height]) { if(draw_references) %frame(); // Draw right Y smooth rod rotate([0,0,180]) standard_rod(diam=axes_Ysmooth_rodD, length=axes_Ysmooth_rodLen, threaded=false, echoPart=true); Cyclone_X_rightFrame(); // TRANSLATE REFERENCE POSITION to the LEFT frame, Y smooth rod end translate([axes_Ysmooth_separation,0,0]) { if(draw_references) %frame(); // Draw right Y smooth rod rotate([0,0,180]) standard_rod(diam=axes_Ysmooth_rodD, length=axes_Ysmooth_rodLen, threaded=false, echoPart=true); Cyclone_X_leftFrame(); } // TRANSLATE REFERENCE POSITION to the right frame, X lower smooth rod end translate([axes_Xreference_posX,axes_Xreference_posY,axes_Xreference_height]) { if(draw_references) %frame(); // Draw bottom X smooth rod rotate([0,0,-90]) standard_rod(diam=axes_Xsmooth_rodD, length=axes_Xsmooth_rodLen, threaded=false, echoPart=true); // Draw X threaded rod translate([-(axes_Xthreaded_rodLen-axes_Xsmooth_rodLen)/2,axes_Xsmooth_separation,0]) rotate([0,0,-90]) standard_rod(diam=axes_Xthreaded_rodD, length=axes_Xthreaded_rodLen, threaded=true, echoPart=true); // Draw top X smooth rod translate([0,axes_Xsmooth_separation,axes_Xsmooth_separation]) rotate([0,0,-90]) standard_rod(diam=axes_Xsmooth_rodD, length=axes_Xsmooth_rodLen, threaded=false, echoPart=true); // TRANSLATE REFERENCE POSITION to the X carriage (centered), X lower smooth rod translate([axes_Xcarriage_pos,0,0]) { if(draw_references) %frame(); Cyclone_X_carriage(); // TRANSLATE REFERENCE POSITION to the Z axis origin (right smooth rod) translate([-axes_Zsmooth_separation/2,axes_Zreference_posY,axes_Zreference_height]) { if(draw_references) %frame(); // Draw Z smooth rod (right) rotate([90,0,0]) standard_rod(diam=axes_Zsmooth_rodD, length=axes_Zsmooth_rodLen, threaded=false, echoPart=true); // Draw Z smooth rod (left) translate([axes_Zsmooth_separation,0,0]) rotate([90,0,0]) standard_rod(diam=axes_Zsmooth_rodD, length=axes_Zsmooth_rodLen, threaded=false, echoPart=true); // Draw Z threaded rod translate([axes_Zsmooth_separation/2,axes_ZthreadedReference_posY,0]) rotate([90,0,0]) standard_rod(diam=axes_Zthreaded_rodD, length=axes_Zthreaded_rodLen, threaded=true, echoPart=true); // TRANSLATE REFERENCE POSITION to the Z axis reference translate([0,0,axes_Zcarriage_pos]) { if(draw_references) %frame(); Cyclone_Z_carriage(); } } } } } translate([axes_Xsmooth_rodLen/2,0,0]) control_board(plasticColor=color_stillPart); // TRANSLATE REFERENCE POSITION to the FRONT RIGHT Y rod idler, Y smooth rod end translate([-axes_Ysmooth_separation/2,-axes_Ysmooth_rodLen/2,axes_Yreference_height]) { if(draw_references) %frame(); Cyclone_Y_rightSmoothRodIdler(); } // TRANSLATE REFERENCE POSITION to the FRONT LEFT Y rod idler, Y smooth rod end translate([axes_Ysmooth_separation/2,-axes_Ysmooth_rodLen/2,axes_Yreference_height]) { if(draw_references) %frame(); Cyclone_Y_leftSmoothRodIdler(); } // TRANSLATE REFERENCE POSITION to the FRONT Y frame, Y threaded rod end translate([0,-axes_Ythreaded_rodLen/2,axes_Y_threaded_height]) { if(draw_references) %frame(); // Draw Y threaded rod standard_rod(diam=axes_Ythreaded_rodD, length=axes_Ythreaded_rodLen, threaded=true, echoPart=true); Cyclone_Y_frontFrame(); // TRANSLATE REFERENCE POSITION to the BACK Y frame, Y threaded rod end translate([0,axes_Ythreaded_rodLen,0]) { if(draw_references) %frame(); Cyclone_Y_backFrame(); } } // TRANSLATE REFERENCE POSITION to the CENTERED Y carriage nut, Y threaded rod translate([0,-axes_Ysmooth_rodLen/2+axes_Ycarriage_pos,axes_Y_threaded_height]) { if(draw_references) %frame(); if(render_DXF_workbed) !Cyclone_Y_carriage(); // Render carriage exclusively else Cyclone_Y_carriage(); } }