Added files for the new iteration (work in progress)

pull/20/head
Carlos Garcia Saura 2014-07-01 16:18:27 +02:00
parent 06e598c4d8
commit 721ba6f7ec
8 changed files with 1341 additions and 0 deletions

View File

@ -0,0 +1,186 @@
// This file is part of Cyclone PCB Factory: an open-source 3D printable CNC machine for PCB manufacture
// http://reprap.org/wiki/Cyclone_PCB_Factory
// Original author: Carlosgs (http://carlosgs.es)
// License: Attribution - Share Alike - Creative Commons (http://creativecommons.org/licenses/by-sa/3.0/)
// Designed with http://www.openscad.org/
// Include necessary libraries
use <libs/obiscad/vector.scad>
use <libs/obiscad/attach.scad>
use <libs/obiscad/bcube.scad>
use <libs/standard_parts.scad>
use <libs/hole_for_screw.scad>
// Parameters for the bottom base
base_size_X = 304.8;
base_size_Y = 261.62;
base_thickness = 8;
base_corner_radius = 20;
base_corner_res = 0;
// Parameters for the axes sizes
axes_Xsmooth_rodLen = 295;
axes_Ysmooth_rodLen = 255;
axes_Zsmooth_rodLen = 150;
axes_Xthreaded_rodLen = 300;
axes_Ythreaded_rodLen = 300;
axes_Zthreaded_rodLen = 100;
axes_Xsmooth_rodD = 8.5;
axes_Ysmooth_rodD = 8.5;
axes_Zsmooth_rodD = 8.5;
axes_Xthreaded_rodD = 8;
axes_Ythreaded_rodD = 8;
axes_Zthreaded_rodD = 8;
// Parameters for the axes reference position
// Note: The reference coordinates are centered like this:
// Y axis reference is the Y smooth rod, BACK of LEFT FRAME
// X axis reference is the X threaded rod edge, LEFT FRAME
// Z axis reference is the Z threaded rod, at the height of the Z nut, and relative to the X reference
axes_Yreference_height = 30;
axes_Xreference_height = 60; // relative to Y reference
axes_Zreference_height = 35; // relative to X reference
axes_Xreference_posY = 60; // relative to Y reference. Moves the X axis to the front of the machine
axes_Zreference_posY = 15; // relative to X reference. Positions Z nut between the Y rods
axes_Ysmooth_separation = 210;
axes_Xsmooth_separation = 40;
// Parameters for the axis-nut offsets (along same axes)
axes_Xnut_offset = 10;
axes_Ynut_offset = 0;
// Carriage positions (for rendering)
axes_Xcarriage_pos = 70;
axes_Ycarriage_pos = 40;
axes_Zcarriage_pos = 20;
// Draw auxiliary reference (LCS axis, etc)
draw_references = true;
// Useful command reference:
//use <MCAD/motors.scad>
//stepper_motor_mount(nema_standard=17, slide_distance=10, $fn=40, mochup=true);
//use <MCAD/boxes.scad>
//roundedBox([10,20,30], radius=2, sidesonly=false, $fn=60);
//use <libs/obiscad/bcube.scad>
//bcube([20,20,10],cr=4, cres=10);
//include <MCAD/stepper.scad>
//motor(Nema17, size=NemaMedium, dualAxis=false);
//use <MCAD/teardrop.scad>
//teardrop(radius=10, length=20, angle=90);
//use <MCAD/nuts_and_bolts.scad>
//nutHole(size=3, tolerance=0.5, proj=-1);
//boltHole(size=3, length=10, tolerance=0.5, proj=-1, $fn=40);
//use <libs/hole_for_screw.scad>
//hole_for_screw(size=3,length=15,nutDepth=0,nutAddedLen=3.5,captiveLen=0);
//-- Connector definitions
// att. point att. axis roll
//C_origin = [ [0,0,0], [0,0,1], 0 ];
//C_other = [ [0,0,20], [0,1,1], 5 ];
//
//if(draw_references) {
// %frame();
// %connector(C_origin);
// %connector(C_other);
//}
//attach(a,origin) cylinder(r=0.25, h=20, $fn=3);
// BEGIN ASSEMBLING THE DESIGN
// Dummy part for allowing rendering of all objects with %
cube([10,20,30]);
// Main base for the machine
beveledBase([base_size_X,base_size_Y,base_thickness], radius=base_corner_radius, res=base_corner_res);
//%color("brown") translate([0,0,-base_thickness/2]) bcube([base_size_X,base_size_Y,base_thickness], cr=base_corner_radius, cres=base_corner_res);
// A4 paper sheet for reference
standard_paperSheet_A4();
// Cyclone foot stands
foot_offset = 40;
translate([0,0,-base_thickness]) {
translate([base_size_X/2-foot_offset,base_size_Y/2-foot_offset])
rubberFoot();
translate([-base_size_X/2+foot_offset,base_size_Y/2-foot_offset])
rubberFoot();
translate([-base_size_X/2+foot_offset,-base_size_Y/2+foot_offset])
rubberFoot();
translate([base_size_X/2-foot_offset,-base_size_Y/2+foot_offset])
rubberFoot();
}
// CHANGE REFERENCE POSITION to the left frame, Y smooth rod end
translate([axes_Ysmooth_separation/2,-axes_Ysmooth_rodLen/2,axes_Yreference_height]) {
if(draw_references) %frame();
}
// CHANGE REFERENCE POSITION to the left frame, Y smooth rod end
translate([axes_Ysmooth_separation/2,-axes_Ysmooth_rodLen/2,axes_Yreference_height]) {
if(draw_references) %frame();
// Draw left Y smooth rod
standard_rod(diam=axes_Ysmooth_rodD, length=axes_Ysmooth_rodLen, threaded=false);
// Draw right Y smooth rod
translate([-axes_Ysmooth_separation,0,0])
standard_rod(diam=axes_Ysmooth_rodD, length=axes_Ysmooth_rodLen, threaded=false);
// CHANGE REFERENCE POSITION to the left frame, Y smooth rod end
translate([axes_Xsmooth_rodLen/2-axes_Ysmooth_separation/2,axes_Xreference_posY,axes_Xreference_height]) {
if(draw_references) %frame();
// Draw X threaded rod
rotate([0,0,90]) standard_rod(diam=axes_Xsmooth_rodD, length=axes_Xsmooth_rodLen, threaded=true);
// Draw bottom X smooth rod
translate([0,axes_Xsmooth_separation,0])
rotate([0,0,90]) standard_rod(diam=axes_Xsmooth_rodD, length=axes_Xsmooth_rodLen, threaded=false);
// Draw top X smooth rod
translate([0,0,axes_Xsmooth_separation])
rotate([0,0,90]) standard_rod(diam=axes_Xsmooth_rodD, length=axes_Xsmooth_rodLen, threaded=false);
// CHANGE REFERENCE POSITION to the X carriage (nut)
translate([-axes_Xcarriage_pos,0,0]) {
if(draw_references) %frame();
cyclone_X_carriage();
// CHANGE REFERENCE POSITION to the X carriage (nut)
translate([0,axes_Zreference_posY,axes_Zreference_height]) {
if(draw_references) %frame();
cyclone_Z_carriage();
}
}
}
}

View File

@ -0,0 +1,32 @@
// This file is part of Cyclone PCB Factory: a 3D printable CNC machine for PCB manufacture
// http://reprap.org/wiki/Cyclone_PCB_Factory
// Author: Carlosgs (http://carlosgs.es)
// License: Attribution - Share Alike - Creative Commons (http://creativecommons.org/licenses/by-sa/3.0/)
include <MCAD/nuts_and_bolts.scad>
module hole_for_screw(size=3,length=20,nutDepth=5,nutAddedLen=0,captiveLen=0,tolerance=0.5) {
*translate([0,-length/2+nutDepth,0])
rotate([90,0,0])
hull() {
translate([0,0,nutDepth])
scale([1,1,0.01])
nutHole(size=size, tolerance=tolerance, proj=-1);
scale([1,1,0.01]) nutHole(size=size, tolerance=tolerance, proj=-1);
}
radius = METRIC_NUT_AC_WIDTHS[size]/2+tolerance;
height = METRIC_NUT_THICKNESS[size]+tolerance;
translate([0,-length/2+height+nutAddedLen+nutDepth-0.01,0])
scale([1,(height+nutAddedLen)/height,1])
rotate([90,0,0])
hull() {
nutHole(size=size, tolerance=tolerance, proj=-1);
translate([0,captiveLen,0])
nutHole(size=size, tolerance=tolerance, proj=-1);
}
translate([0,length/2-2.6,0])
rotate([90,0,0])
render() boltHole(size=size, length=length-2.6+0.5, tolerance=tolerance-0.1, proj=-1, $fn=40);
}
hole_for_screw(size=3,length=20,nutDepth=0,nutAddedLen=0,captiveLen=10);

View File

@ -0,0 +1,148 @@
//---------------------------------------------------------------
//-- Openscad Attachment library
//-- Attach parts easily. Make your designs more reusable and clean
//---------------------------------------------------------------
//-- This is a component of the obiscad opescad tools by Obijuan
//-- (C) Juan Gonzalez-Gomez (Obijuan)
//-- Sep-2012
//---------------------------------------------------------------
//-- Released under the GPL license
//---------------------------------------------------------------
use <vector.scad>
//--------------------------------------------------------------------
//-- Draw a connector
//-- A connector is defined a 3-tuple that consist of a point
//--- (the attachment point), and axis (the attachment axis) and
//--- an angle the connected part should be rotate around the
//-- attachment axis
//--
//--- Input parameters:
//--
//-- Connector c = [p , n, ang] where:
//--
//-- p : The attachment point
//-- v : The attachment axis
//-- ang : the angle
//--------------------------------------------------------------------
module connector(c)
{
//-- Get the three components from the connector
p = c[0];
v = c[1];
ang = c[2];
//-- Draw the attachment poing
color("Gray") point(p);
//-- Draw the attachment axis vector (with a mark)
translate(p)
rotate(a=ang, v=v)
color("Gray") vector(unitv(v)*6, l_arrow=2, mark=true);
}
//-------------------------------------------------------------------------
//-- ATTACH OPERATOR
//-- This operator applies the necesary transformations to the
//-- child (attachable part) so that it is attached to the main part
//--
//-- Parameters
//-- a -> Connector of the main part
//-- b -> Connector of the attachable part
//-------------------------------------------------------------------------
module attach(a,b)
{
//-- Get the data from the connectors
pos1 = a[0]; //-- Attachment point. Main part
v = a[1]; //-- Attachment axis. Main part
roll = a[2]; //-- Rolling angle
pos2 = b[0]; //-- Attachment point. Attachable part
vref = b[1]; //-- Atachment axis. Attachable part
//-- The rolling angle of the attachable part is not used
//-------- Calculations for the "orientate operator"------
//-- Calculate the rotation axis
raxis = cross(vref,v);
//-- Calculate the angle between the vectors
ang = anglev(vref,v);
//--------------------------------------------------------.-
//-- Apply the transformations to the child ---------------------------
//-- Place the attachable part on the main part attachment point
translate(pos1)
//-- Orientate operator. Apply the orientation so that
//-- both attachment axis are paralell. Also apply the roll angle
rotate(a=roll, v=v) rotate(a=ang, v=raxis)
//-- Attachable part to the origin
translate(-pos2)
child(0);
}
//--------------------------------------------------------------------
//--- An example of the attach operator
//---
//--- There are two parts: the main body and an arm
//--- They both are cubes (for simplicity)
//---
//-- In the main body there are 2 connectors defined, so that
//-- the arm can be attached to any of them (or both if you like)
//------------------------------------------------------------------
//-- In the debug mode the connectors and additional information
//-- are shown
debug=true;
//-- Define the Main part: A cube
//-- Two attachment points are defined: one on the top, another in the
//--- left side
size = [10,10,10];
//-- Connectors defined:
//-- Att. point Att. Axis Roll
c1 = [ [0,0,size[2]/2], [0,0,1], 20]; //-- Connector on the top
c2 = [ [-size[0]/2,0,0], [-1,0,0], 90]; //-- Connector on the left
//-- Draw the main part along with the connectors (for debugging)
cube(size,center=true);
//-- In debug mode: Draw the main part connectors!
if (debug) {
connector(c1);
connector(c2);
}
//-- Define the Attachable part. It is another cube, with one connector
asize = [5,20,3];
a = [ [0,asize[1]/2-3,-asize[2]/2], [0,0,1], 0 ];
//-- Do the attach!
//-- Just change c1 by c2 to attach the part to the other
//-- connector. Super-easy!! :-)
//-- Modify the c1 and c2 roll angle for rotating the attachable
//-- part to the desired orientation
attach(c1,a)
//-- This is the attachable part!
union() {
cube(asize,center=true); //-- The part
//-- In debug mode show additional info:
if (debug) {
frame(l=10); //-- The part frame of reference.
connector(a); //-- Show the part connector
}
};

View File

@ -0,0 +1,70 @@
//------------------------------------------------------------------------------
// Bevel edge cube.
// (c) Juan Gonzalez-Gomez (Obijuan), Sep-2012
//------------------------------------------------------------------------------
//----------------- IMPLEMENTATION USING THE MINKOWSKI OPERATOR ----------------
//------------------------------------------------------------------------------
//-- Bevel Cube main function
//-- Parameters:
//-- * Size: Cube size
//-- * cr : Corner radius (if cr==0, a standar cube is built)
//-- * cres: Corner resolution (in points). cres=0 means flat corners
//------------------------------------------------------------------------------
module bcube(size,cr=0,cres=0)
{
//-- Internal cube size
bsize = size - 2*[cr,cr,0];
//-- Get the (x,y) coorner coordinates in the 1st cuadrant
x = bsize[0]/2;
y = bsize[1]/2;
//-- A corner radius of 0 means a standar cube!
if (cr==0)
cube(bsize,center=true);
else {
//-- The height of minkowski object is double. So
//-- we sould scale by 0.5
scale([1,1,0.5])
//-- This translation is for centering the minkowski objet
translate([-x, -y,0])
//-- Built the beveled cube with minkowski
minkowski() {
//-- Internal cube
cube(bsize,center=true);
//-- Cylinder in the corner (1st cuadrant)
translate([x,y, 0])
cylinder(r=cr, h=bsize[2],center=true, $fn=4*(cres+1));
}
}
}
//-- Examples of use of the bcube() module
//-- Standar cube
translate([-15,15,0])
bcube([20,20,10]);
//-- Beveled cube (0 point resolution)
translate([15,15,0])
bcube([20,20,10],cr=4);
//-- Beveled cube (1 point resolution)
translate([-15,-15,0])
bcube([20,20,10],cr=4, cres=1);
//-- Beveled cube (4 points resolution)
translate([15,-15,0])
bcube([20,20,10],cr=4, cres=4);

View File

@ -0,0 +1,485 @@
//---------------------------------------------------------------
//-- Openscad Bevel library
//-- Bevel the edges or add buttress to your parts!
//---------------------------------------------------------------
//-- This is a component of the obiscad opescad tools by Obijuan
//-- (C) Juan Gonzalez-Gomez (Obijuan)
//-- Sep-2012
//---------------------------------------------------------------
//-- Released under the GPL license
//---------------------------------------------------------------
use <vector.scad>
use <attach.scad>
//-----------------------------------------------------------------
//- Rotate a vector an angle teta around the axis given by the
//-- unit vector k
//-----------------------------------------------------------------
function Rot_axis_ang(p,k,teta) =
p*cos(teta) + cross(k,p*sin(teta)) + k*dot(k,p)*(1-cos(teta));
//-- Transformation defined by rotating vfrom vector to vto
//-- It is applied to vector v
//-- It returns the transformed vector
function Tovector(vfrom, vto, v) =
Rot_axis_ang(v, unitv(cross(vfrom,vto)), anglev(vfrom,vto));
//-- Auxiliary function for extending a vector of 3 components to 4
function ev(v,c=0) = [v[0], v[1], v[2], c];
//-- Calculate the determinant of a matrix given by 3 row vectors
function det(a,b,c) =
a[0]*(b[1]*c[2]-b[2]*c[1])
- a[1]*(b[0]*c[2]-b[2]*c[0])
+ a[2]*(b[0]*c[1]-b[1]*c[0]);
//-- Sign function. It only returns 2 values: -1 when x is negative,
//-- or 1 when x=0 or x>0
function sign2(x) = sign(x)+1 - abs(sign(x));
//--------------------------------------------------------------------
//-- Beveled concave corner
//-- NOT AN INTERFACE MODULE (The user should call bconcave_corner instead)
//--
//-- Parameters:
//-- * cr: Corner radius
//-- * cres: Corner resolution
//-- * l: Length
//- * th: Thickness
//--------------------------------------------------------------------
module bconcave_corner_aux(cr,cres,l,th)
{
//-- vector for translating the main cube
//-- so that the top rigth corner is on the origin
v1 = -[(cr+th)/2, (cr+th)/2, 0];
//-- The part frame of reference is on the
//-- internal corner
v2 = [cr,cr,0];
//-- Locate the frame of ref. in the internal
//-- corner
translate(v2)
difference() {
//-- Main cube for doing the corner
translate(v1)
//color("yellow",0.5)
cube([cr+th, cr+th, l],center=true);
//-- Cylinder used for beveling...
cylinder(r=cr, h=l+1, center=true, $fn=4*(cres+1));
}
}
//-----------------------------------------------------------------------------
//-- API MODULE
//--
//-- Beveled concave corner
//--
//-- Parameters:
//-- * cr: Corner radius
//-- * cres: Corner resolution
//-- * l: Length
//- * th: Thickness
//-- * ext_corner: Where the origin is locate. By default it is located
//-- in the internal corner (concave zone). If true,
//-- it will be in the external corner (convex zone)
//----------------------------------------------------------------------------
module bconcave_corner(cr=1,cres=4,th=1,l=10,ext_corner=false)
{
//-- Locate the origin in the exterior edge
if (ext_corner==true)
translate([th,th,0])
bconcave_corner_aux(cr,cres,l,th);
else
//-- Locate the origin in the interior edge
translate([0.01, 0.01,0])
bconcave_corner_aux(cr,cres,l,th);
}
//----------------------------------------------------------------------
//-- Auxiliary module (NOT FOR THE USER!)
//-- It is and standar "attach", particularized for placing concave
//-- corners
//----------------------------------------------------------------------
module bconcave_corner_attach_final(
cfrom, //-- Origin connector
cto, //-- Target connector
cr,
cres,
l,
th,
ext_corner)
{
//-- This block represent an attach operation
//-- It is equivalent to: attach(cto,cfrom)
translate(cto[0])
rotate(a=cto[2], v=cto[1])
rotate(a=anglev(cfrom[1],cto[1]),
v=cross(cfrom[1],cto[1]) )
translate(-cfrom[0])
//-- Place the concave corner (along with some debug information)
union() {
//color("Blue")
//connector(cfrom);
//connector([cfrom[0],cnormal_v,0]);
bconcave_corner(cr=cr,
cres=cres,
l=l,
th=th,
ext_corner=ext_corner);
}
}
//-------------------------------------------------------------------------
//-- Auxiliary module (NOT FOR THE USER!)
//-- It is the general module for performing the bconcave corner attach
//-- All the parameters should be passed to it
//--
//-- External connectors are where de concave corner will be placed. They
//-- are provided by the user
//--
//-- Internal connectors refers to the connectors of the concave corner
//--
//-- Then an attach between the internal and external connectors is done
//-------------------------------------------------------------------------
module bconcave_corner_attach_aux(
//-- External connectors
edge_c,
normal_c,
//-- Internal connectors
iedge_c,
inormal_c,
//-- Other params
cr,
cres,
th,
l,
ext_corner)
{
//-- Get the Corner vectors from the internal connectors
cedge_v = iedge_c[1]; //-- Corner edge vector
cnormal_v = inormal_c[1]; //-- Corner normal vector
//-- Get the vector paralell and normal to the edge
//-- From the external connectors
edge_v = edge_c[1]; //-- Edge verctor
enormal_v = normal_c[1]; //-- Edge normal vector
//---------------------------------------------------------------
//-- For doing a correct attach, first the roll angle for the
//-- external connector should be calculated. It determines the
//-- orientation of the concave corner around the edge vector
//--
//-- This orientation is calculated using the edge normal vectors
//-- that bisec the corner
//--
//-- There are 2 different cases: depending on the relative angle
//-- between the internal and external edges. They can be parallel
//-- or not
//-----------------------------------------------------------------
//-- The roll angle has two components: the value and the sign
//-- Calculate the sign of the rotation (the sign of roll)
s=sign2(det(cnormal_v,enormal_v,edge_v));
//-- Calculate the roll when the edges are paralell
rollp = s*anglev(cnormal_v, enormal_v);
//-- Calculate the roll in the general case
Tcnormal_v = Tovector(cedge_v, edge_v, cnormal_v);
rollg=s*anglev(Tcnormal_v, enormal_v);
//-- For the paralell case... use rollp
if (mod(cross(cedge_v,edge_v))==0) {
//echo("Paralell");
//-- Place the concave bevel corner!
bconcave_corner_attach_final(
cfrom = [[0,0,0], cedge_v, 0],
cto = [edge_c[0], edge_c[1], rollp],
cr = cr,
cres = cres,
l = l,
th = th,
ext_corner = ext_corner);
}
//-- For the general case, use rollg
else {
//echo("not paralell");
//-- Place the concave bevel corner!
bconcave_corner_attach_final(
cfrom = [[0,0,0], cedge_v, 0],
cto = [edge_c[0], edge_c[1], rollg],
cr = cr,
cres = cres,
l = l,
th = th,
ext_corner = ext_corner);
}
}
//---------------------------------------------------------------------------
//-- API MODULE
//--
//-- Bevel an edge. A concave corner is located so that the calling
//-- module can easily perform a difference() operation
//--
//-- Two connectors are needed:
//-- * edge_c : Connector located on the edge, paralell to the edge
//-- * normal_c : Connector located on the same point than edge_c
//-- pointing to the internal corner part, in the direction
//-- of the corner bisector
//-- * cr : Corner radius
//-- * cres : Corner resolution
//-- * l : Corner length
//--------------------------------------------------------------------------
module bevel(
edge_c,
normal_c,
cr=3,
cres=3,
l=5)
{
//-- Call the general module with the correct internal connectors
bconcave_corner_attach_aux(
//-- External connectors
edge_c = edge_c,
normal_c = normal_c,
//-- Internal connectors
iedge_c = [[0,0,0], unitv([0,0,1]), 0],
inormal_c = [[0,0,0], [-1,-1,0] , 0],
//-- The other params
cr=cr,
cres=cres,
l=l,
th=1,
ext_corner=false);
}
//---------------------------------------------------------------------------
//-- API MODULE
//--
//-- Attach a Beveled concave corner
//-- Two connectors are needed:
//-- * edge_c : Connector located on the edge, paralell to the edge
//-- * normal_c : Connector located on the same point than edge_c
//-- pointing to the internal corner part, in the direction
//-- of the corner bisector
//-- * cr : Corner radius
//-- * cres : Corner resolution
//-- * l : Corner length
//-- * th : Corner thickness (not visible when ext_corner=false)
//-- * ext_corner: If the exterior corner is used as a reference
//--------------------------------------------------------------------------
module bconcave_corner_attach(
edge_c,
normal_c,
cr=3,
cres=3,
l=5,
th=1,
ext_corner=false)
{
//-- Call the general module with the correct internal connectors
bconcave_corner_attach_aux(
//-- External connectors
edge_c = edge_c,
normal_c = normal_c,
//-- Internal connectors
iedge_c = [[0,0,0], unitv([0,0,1]), 0],
inormal_c = [[0,0,0], [1,1,0] , 0],
//-- The other params
cr=cr,
cres=cres,
l=l,
th=th,
ext_corner=ext_corner);
}
//-----------------------------------------------------------
//--- TEST MODULES
//-----------------------------------------------------------
//-----------------------------------------------------------------
//-- Testing the Bevel operator... All the 12 edges of a cube
//-- are beveled. All the cases are covered, so it is a good
//-- test for finding bugs!
//----------------------------------------------------------------
module Test1_beveled_cube()
{
//-------- Main object
size=[30,30,30];
//-- Define all the edges connectors
ec1 = [[size[0]/2, 0,size[2]/2], [0,1,0], 0];
en1 = [ec1[0], [1,0,1], 0];
ec2 = [[-size[0]/2, 0,size[2]/2], [0,1,0], 0];
en2 = [ec2[0], [-1,0,1], 0];
ec3 = [[-size[0]/2, 0,-size[2]/2], [0,1,0], 0];
en3 = [ec3[0], [-1,0,-1], 0];
ec4 = [[size[0]/2, 0,-size[2]/2], [0,1,0], 0];
en4 = [ec4[0], [1,0,-1], 0];
ec5 = [[0, size[0]/2,size[2]/2], [1,0,0], 0];
en5 = [ec5[0], [0,1,1], 0];
ec6 = [[0, -size[0]/2,size[2]/2], [1,0,0], 0];
en6 = [ec6[0], [0,-1,1], 0];
ec7 = [[0, -size[0]/2,-size[2]/2], [1,0,0], 0];
en7 = [ec7[0], [0,-1,-1], 0];
ec8 = [[0, size[0]/2,-size[2]/2], [1,0,0], 0];
en8 = [ec8[0], [0,1,-1], 0];
ec9 = [[size[2]/2, size[0]/2,0 ], [0,0,1], 0];
en9 = [ec9[0], [1,1,0], 0];
ec10 = [[size[2]/2, -size[0]/2,0 ], [0,0,1], 0];
en10 = [ec10[0], [1,-1,0], 0];
ec11 = [[-size[2]/2, -size[0]/2,0 ], [0,0,1], 0];
en11 = [ec11[0], [-1,-1,0], 0];
ec12 = [[-size[2]/2, size[0]/2,0 ], [0,0,1], 0];
en12 = [ec12[0], [-1,1,0], 0];
//-- for Debuging... Show a specefic connector
*connector(ec12);
*connector(en12);
//-- Parameters for all the beveled edges
//-- It can be changed for testing
cr=2;
cres=0;
//-- Remove from the main cube the concave corner parts
difference() {
//-- Draw the main cube
cube(size,center=true);
//-- Attach the concave corners for beveling!
bevel(ec1,en1,cr=cr,cres=0, l=size[1]+2);
bevel(ec2,en2,cr=cr,cres=0, l=size[1]+2);
bevel(ec3,en3,cr=cr,cres=0, l=size[1]+2);
bevel(ec4,en4,cr=cr,cres=0, l=size[1]+2);
bevel(ec5,en5,cr=cr,cres=0, l=size[0]+2);
bevel(ec6,en6,cr=cr,cres=0, l=size[0]+2);
bevel(ec7,en7,cr=cr,cres=0, l=size[0]+2);
bevel(ec8,en8,cr=cr,cres=0, l=size[0]+2);
bevel(ec9,en9,cr=cr,cres=0, l=size[0]+2);
bevel(ec10,en10,cr=cr,cres=0, l=size[0]+2);
bevel(ec11,en11,cr=cr,cres=0, l=size[0]+2);
bevel(ec12,en12,cr=cr,cres=0, l=size[0]+2);
}
}
//----------------------------------------------------------------
//-- Testing the bconcave_corner_attach operator
//-- It is used for adding buttress between two ortogonal parts
//----------------------------------------------------------------
module Test2_buttress()
{
size=[30,30,30];
th=3;
l=2;
cr = 6;
//-- A cross. It divides the space in 4 quadrants
difference() {
cube(size,center=true);
translate([size[0]/4 + th/2, 0, size[0]/4 + th/2])
cube([size[0]/2, size[1]+2, size[2]/2],center=true);
translate([-size[0]/4 - th/2, 0, size[0]/4 + th/2])
cube([size[0]/2, size[1]+2, size[2]/2],center=true);
translate([-size[0]/4 - th/2, 0, -size[0]/4 - th/2])
cube([size[0]/2, size[1]+2, size[2]/2],center=true);
translate([size[0]/4 + th/2, 0, -size[0]/4 - th/2])
cube([size[0]/2, size[1]+2, size[2]/2],center=true);
}
ec1 = [[th/2, size[1]/2-l/2, th/2], [0,1,0], 0];
en1 = [ec1[0],[1,0,1],0];
ec2 = [[th/2, -size[1]/2+l/2, th/2], [0,1,0], 0];
en2 = [ec2[0],[1,0,1],0];
ec3 = [[-th/2, 0, th/2], [0,1,0], 0];
en3 = [ec3[0],[-1,0,1],0];
ec4 = [[-th/2, 0, -th/2], [0,1,0], 0];
en4 = [ec4[0],[-1,0,-1],0];
ec5 = [[th/2, 0, -th/2], [0,1,0], 0];
en5 = [ec5[0],[1,0,-1],0];
*connector(ec5);
*connector(en5);
//-- quadrant 1: two buttress
bconcave_corner_attach(ec1,en1,cr, l=l, cres=0);
bconcave_corner_attach(ec2,en2,cr, l=l, cres=0);
//-- quadrant 2: one bit buttress
bconcave_corner_attach(ec3,en3,cr=3, l=size[1], cres=0);
//-- quadrant 3: a Rounded buttress
bconcave_corner_attach(ec4,en4,cr=8, l=size[1], cres=5);
//-- Quadrant 4: A rounded buttress in the middle
bconcave_corner_attach(ec5,en5,cr=8, l=size[1]/3, cres=5);
}
//-------------------------------------------------------------------
//-- TESTS
//-------------------------------------------------------------------
//-- example 1: A beveled concave corner
bconcave_corner(cr=15, cres=10, l=10, th=3, ext_corner=true);
//-- Example 2: Testing the bevel() operator
//Test1_beveled_cube();
//-- Example 3: Testing the bconcave_corner_attach() operator
//Test2_buttress();

View File

@ -0,0 +1,30 @@
//---------------------------------------------------------------
//-- Utils. General utilities...
//-- This is a component of the obiscad opescad tools by Obijuan
//-- (C) Juan Gonzalez-Gomez (Obijuan)
//-- Sep-2012
//---------------------------------------------------------------
//-- Released under the GPL license
//---------------------------------------------------------------
//-----------------------------------------------------
//-- Functions for converting a scalar into a vector:
//-----------------------------------------------------
//-- The scalar is interpreted as the x coordinate
function VX(x) = [x,0,0];
//-- The scalar is interpreted as the y coordinate
function VY(y) = [0,y,0];
//-- The scalar is interpreted as the z coordinate
function VZ(z) = [0,0,z];
//-----------------------------------------
//-- Definition for accessing vector componentes easily
//--------------------------------------------------------
X = 0;
Y = 1;
Z = 2;

View File

@ -0,0 +1,345 @@
//---------------------------------------------------------------
//-- Openscad vector library
//-- This is a component of the obiscad opescad tools by Obijuan
//-- (C) Juan Gonzalez-Gomez (Obijuan)
//-- Sep-2012
//---------------------------------------------------------------
//-- Released under the GPL license
//---------------------------------------------------------------
//----------------------------------------
//-- FUNCTIONS FOR WORKING WITH VECTORS
//----------------------------------------
//-- Calculate the module of a vector
function mod(v) = (sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]));
//-- Calculate the cros product of two vectors
function cross(u,v) = [
u[1]*v[2] - v[1]*u[2],
-(u[0]*v[2] - v[0]*u[2]) ,
u[0]*v[1] - v[0]*u[1]];
//-- Calculate the dot product of two vectors
function dot(u,v) = u[0]*v[0]+u[1]*v[1]+u[2]*v[2];
//-- Return the unit vector of a vector
function unitv(v) = v/mod(v);
//-- Return the angle between two vectors
function anglev(u,v) = acos( dot(u,v) / (mod(u)*mod(v)) );
//-- Return a vector that is perpendicular
function perpendicular(vec) = vec.x == 0 ? [1,0,0] : vec.y == 0 ? [0,1,0] : vec.z == 0 ? [0,0,1] : [-vec.y,vec.x,0];;
//----------------------------------------------------------
//-- Draw a point in the position given by the vector p
//----------------------------------------------------------
module point(p)
{
translate(p)
sphere(r=0.7,$fn=20);
}
//------------------------------------------------------------------
//-- Draw a vector poiting to the z axis
//-- This is an auxiliary module for implementing the vector module
//--
//-- Parameters:
//-- l: total vector length (line + arrow)
//-- l_arrow: Vector arrow length
//-- mark: If true, a mark is draw in the vector head, for having
//-- a visual reference of the rolling angle
//------------------------------------------------------------------
module vectorz(l=10, l_arrow=4, mark=false)
{
//-- vector body length (not including the arrow)
lb = l - l_arrow;
//-- The vector is locatead at 0,0,0
translate([0,0,lb/2])
union() {
//-- Draw the arrow
translate([0,0,lb/2])
cylinder(r1=2/2, r2=0.2, h=l_arrow, $fn=20);
//-- Draw the mark
if (mark) {
translate([0,0,lb/2+l_arrow/2])
translate([1,0,0])
cube([2,0.3,l_arrow*0.8],center=true);
}
//-- Draw the body
cylinder(r=1/2, h=lb, center=true, $fn=20);
}
//-- Draw a sphere in the vector base
sphere(r=1/2, $fn=20);
}
//-----------------------------------------------------------------
//-- ORIENTATE OPERATOR
//--
//-- Orientate an object to the direction given by the vector v
//-- Parameters:
//-- v : Target orientation
//-- vref: Vector reference. It is the vector of the local frame
//-- of the object that want to be poiting in the direction
//-- of v
//-- roll: Rotation of the object around the v axis
//-------------------------------------------------------------------
module orientate(v,vref=[0,0,1], roll=0)
{
//-- Calculate the rotation axis
raxis = cross(vref,v);
//-- Calculate the angle between the vectors
ang = anglev(vref,v);
//-- Rotate the child!
rotate(a=roll, v=v)
rotate(a=ang, v=raxis)
child(0);
}
//---------------------------------------------------------------------------
//-- Draw a vector
//--
//-- There are two modes of drawing the vector
//-- * Mode 1: Given by a cartesian point(x,y,z). A vector from the origin
//-- to the end (x,y,z) is drawn. The l parameter (length) must
//-- be 0 (l=0)
//-- * Mode 2: Give by direction and length
//-- A vector of length l pointing to the direction given by
//-- v is drawn
//---------------------------------------------------------------------------
//-- Parameters:
//-- v: Vector cartesian coordinates
//-- l: total vector length (line + arrow)
//-- l_arrow: Vector arrow length
// mark: If true, a mark is draw in the vector head, for having
//-- a visual reference of the rolling angle
//---------------------------------------------------------------------------
module vector(v,l=0, l_arrow=4, mark=false)
{
//-- Get the vector length from the coordinates
mod = mod(v);
//-- The vector is very easy implemented by means of the orientate
//-- operator:
//-- orientate(v) vectorz(l=mod, l_arrow=l_arrow)
//-- BUT... in OPENSCAD 2012.02.22 the recursion does not
//-- not work, so that if the user use the orientate operator
//-- on a vector, openscad will ignore it..
//-- The solution at the moment (I hope the openscad developers
//-- implement the recursion in the near future...)
//-- is to repite the orientate operation in this module
//---- SAME CALCULATIONS THAN THE ORIENTATE OPERATOR!
//-- Calculate the rotation axis
vref = [0,0,1];
raxis = cross(vref,v);
//-- Calculate the angle between the vectors
ang = anglev(vref,v);
//-- orientate the vector
//-- Draw the vector. The vector length is given either
//--- by the mod variable (when l=0) or by l (when l!=0)
if (l==0)
rotate(a=ang, v=raxis)
vectorz(l=mod, l_arrow=l_arrow, mark=mark);
else
rotate(a=ang, v=raxis)
vectorz(l=l, l_arrow=l_arrow, mark=mark);
}
//----------------------------------------------------
//-- Draw a Frame of reference
//-- Parameters:
//-- l: length of the Unit vectors
//-----------------------------------------------------
module frame(l=10, l_arrow=4)
{
//-- Z unit vector
color("Blue")
vector([0,0,l], l_arrow=l_arrow);
//-- X unit vector
color("Red")
vector([l,0,0], l_arrow=l_arrow );
//-- Y unit vector
color("Green")
vector([0,l,0],l_arrow=l_arrow);
//-- Origin
color("Gray")
sphere(r=1, $fn=20);
}
//--------------------------------------------------
//-- Modules for testings and examples
//-- Testing that the vector library is working ok
//--------------------------------------------------
//-- 22 vectors in total are drawn, poiting to different directions
module Test_vectors1()
{
a = 20;
k = 1;
//-- Add a frame of reference (in the origin)
frame(l=a);
//-- Negative vectors, pointing towards the three axis: -x, -y, -z
color("Red") vector([-a, 0, 0]);
color("Green") vector([0, -a, 0]);
color("Blue") vector([0, 0, -a]);
//-- It is *not* has been implemented using a for loop on purpose
//-- This way, individual vectors can be commented out or highlighted
//-- vectors with positive z
vector([a, a, a*k]);
vector([0, a, a*k]);
vector([-a, a, a*k]);
vector([-a, 0, a*k]);
vector([-a, -a, a*k]);
vector([0, -a, a*k]);
vector([a, -a, a*k]);
vector([a, 0, a*k]);
//-- Vectors with negative z
vector([a, a, -a*k]);
vector([0, a, -a*k]);
vector([-a, a, -a*k]);
vector([-a, 0, -a*k]);
vector([-a, -a, -a*k]);
vector([0, -a, -a*k]);
vector([a, -a, -a*k]);
vector([a, 0, -a*k]);
}
//--- Another test...
module Test_vectors2()
{
//-- Add the vector into the vector table
//-- This vectors are taken as directions
//-- All the vectors will be drawn with the same length (l)
vector_table = [
[1, 1, 1],
[0, 1, 1],
[-1, 1, 1],
[-1, 0, 1],
[-1, -1, 1],
[0, -1, 1],
[1, -1, 1],
[1, 0, 1],
[1, 1, -1],
[0, 1, -1],
[-1, 1, -1],
[-1, 0, -1],
[-1, -1, -1],
[0, -1, -1],
[1, -1, -1],
[1, 0, -1],
];
//-- Vector length
l=20;
frame(l=10);
//-- Draw all the vector given in the table
//-- The vectors point to the direction given in the table
//-- They all are drawn with a length equal to l
for (v=vector_table) {
//-- Vector given by direction and length
vector(v,l=l);
}
}
//-- Test the cross product and the angle
//-- between vectors
module Test_vector3()
{
//-- Start with 2 unit vectors
v=unitv([1,1,1]);
u=unitv([0,1,0]);
//-- Draw the vector in different colors
//-- Increase the length for drawing
color("Red") vector(v*20);
color("blue") vector(u*20);
//-- Get the cross product
w = cross(v,u);
vector(w*20);
//-- The cross product is NOT conmutative...
//-- change the order of v and u
w2 = cross(u,v);
vector(w2*20);
//-- w should be perpendicular to v and u
//-- Calculate the angles between them:
echo("U , V: ", anglev(u,v));
echo("W , U: ", anglev(w,u));
echo("W , V: ", anglev(w,v));
}
//-- Test the orientate operator
module Test_vector4()
{
o = [10,10,10];
v = [-10,10,10];
color("Red") vector(o);
color("Blue") vector(v);
//-- Orientate the vector o in the direction of v
orientate(v,o)
vector(o);
//-- Inverse operation: orientate the v vector in the direction
//-- of o
orientate(o,v)
vector(v);
//-- Example of orientation of a cube
orientate(o,vref=[10,-2,5],roll=0)
cube([10,2,5],center=true);
vector([10,-2,5]);
}
//-------- Perform tests......
Test_vector4();
/*
Test_vectors1();
translate([60,0,0])
Test_vectors2();
*/

View File

@ -0,0 +1,45 @@
// This file is part of Cyclone PCB Factory: an open-source 3D printable CNC machine for PCB manufacture
// http://reprap.org/wiki/Cyclone_PCB_Factory
// Original author: Carlosgs (http://carlosgs.es)
// License: Attribution - Share Alike - Creative Commons (http://creativecommons.org/licenses/by-sa/3.0/)
// Designed with http://www.openscad.org/
use <obiscad/bcube.scad>
$render_standard_parts = false;
module renderStandardPart() {
if($render_standard_parts) children();
else %children();
}
module standard_paperSheet_A4(t=0.05) {
renderStandardPart()
translate([0,0,t/2])
color("white") cube([297,210,t], center=true);
}
module standard_rod(diam=8, length=10, threaded=true, center=false, $fn=18) {
renderStandardPart()
if(threaded) {
color("black") rotate([-90,0,0]) cylinder(r=diam/2, h=length, center=center);
} else {
color("grey") rotate([-90,0,0]) cylinder(r=diam/2, h=length, center=center);
}
}
module rubberFoot(diam=40, thickness=8) {
renderStandardPart()
color("black")
translate([0,0,-thickness])
cylinder(r=diam/2, h=thickness);
}
module beveledBase(size=[100,200,10], radius=10, res=15) {
renderStandardPart()
color("brown")
translate([0,0,-size.z/2])
bcube(size, cr=radius, cres=res);
}