FormationControlSimulation/SOURCE/RP_2015_Rozenheck.tex

80 lines
3.5 KiB
TeX

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Lachaise Assignment
% LaTeX Template
% Version 1.0 (26/6/2018)
%
% This template originates from:
% http://www.LaTeXTemplates.com
%
% Authors:
% Marion Lachaise & François Févotte
% Vel (vel@LaTeXTemplates.com)
%
% License:
% CC BY-NC-SA 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0/)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%----------------------------------------------------------------------------------------
% PACKAGES AND OTHER DOCUMENT CONFIGURATIONS
%----------------------------------------------------------------------------------------
\documentclass{article}
\input{structure.tex} % Include the file specifying the document structure and custom commands
%% \usepackage[backend=biber]{biblatex}}
%% \addbibresource{ref.bib}
%----------------------------------------------------------------------------------------
% ASSIGNMENT INFORMATION
%----------------------------------------------------------------------------------------
\title{Controlling a Triangular Formation of Mobile Agent} % Title of the assignment
\author{Anggoro Dwi Nur Rohman\\ \texttt{anggoro\_dwi@student.ub.ac.id}} % Author name and email address
\date{Universitas Brawijaya--- \today} % University, school and/or department name(s) and a date
%----------------------------------------------------------------------------------------
\begin{document}
\maketitle % Print the title
\section*{Pendahuluan}
Akan dirangkum dari penelitian
\section{Formasi Segitiga}
Robot ditandai dengan 1,2,3. Apabila robot 1 mengikuti robot 2 maka dinotasikan dengan $[1] = 2$. jarak antara $i$ dan $[i]$ dinotasikan $d_i$.
Koordinat vector dari agent $i$ dinotasikan dengan $x_i$ terhadap global koordinat yang fiks, dan $y_{ij}$ adalah posisi robot $j$ terhadap sistem koordinat dari $i$ yang telah tentukan. Apabila $R_i$ dan $\tau_i$ adalah matriks rotasi dan vector translasi maka $y_{ij} = R_ix_j + \tau_i, j \in \{1,2,3\}$. Penelitian ini menggunakan kinematik yang sedarhana
\begin{eqnarray*}
\dot{y}_{ii} &=& u_i \quad i \in \{1,2,3\} \\
\dot{x}_{i} &=& R_i^{-1} u_i
\end{eqnarray*}
\section*{Referensi}
%% \printbibliography
%% \begin{refsection}
%% @INPROCEEDINGS{Cao2007,
%% author={M. {Cao} and A. S. {Morse} and C. {Yu} and B. D. O. {Anderson} and S. {Dasguvta}},
%% booktitle={2007 46th IEEE Conference on Decision and Control},
%% title={Controlling a triangular formation of mobile autonomous agents},
%% year={2007},
%% volume={},
%% number={},
%% pages={3603-3608},
%% abstract={This paper proposes a distributed control law for maintaining a triangular formation in the plane consisting of three mobile autonomous agents. It is shown that the control law can cause any initially non-collinear, positively-oriented {resp. negatively-oriented} triangular formation to converge exponentially fast to a desired positively-oriented {resp. negatively- oriented} triangular formation. It is also shown that there is a thin set of initially collinear formations which remain collinear and may drift off to infinity as t rarr infin. These findings complement and extend earlier findings cited below.},
%% keywords={distributed control;mobile robots;multi-robot systems;spatial variables control;triangular formation;mobile autonomous agents;collinear formations;distributed control law;Autonomous agents;USA Councils;Distributed control;H infinity control;Differential equations;Information technology;Art;Australia Council},
%% doi={10.1109/CDC.2007.4434757},
%% ISSN={0191-2216},
%% month={Dec},}
%% \end{refsection}
\end{document}