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Abstract— An important class of multi-robot formations is  desired formation, while the control law in [1] refers sgl&d
specified by desired distances between adjacent robots. In triangular formations. Motivated by this, in the recent @ap
previous work, we showed that distance-based formations can [5] we examined the stabilization issue for distance-based

be globally stabilized by negative gradient, potential field based, f Hi A fi dient trol | d
control laws, if and only if the formation graph is a tree. In this ~ ormations. A negatve gradient control law was propose

paper, we further examine the relation between the cycle space based on a potential function between each of the pairs
of the formation graph and the resulting equilibria of cyclic ~ of agents that form an edge in the formation graph. The

formations. In addition, the results are extended to the case of first result of that paper stated that the system is staHilize
?e'sstj[‘sc;kéazﬁgggﬁggt't%rr‘oﬁggrgéL?:)Sgr‘hsci’:glrj‘lc;rt"i‘(')cngge”ts' The {5 the desired formation provided that the formation graph
' is a tree. The second result of [5] stated that this was in

. INTRODUCTION fact also a necessary condition: the multi-robot system is

Decentralized control of networked multi-agent svstems i lobally stabilizable to the desired formation with negati
'z W utti-ag y Igra\dient control laws if and only if the formation graph is

a field of increasing research interest, due to its apptinati a tree. A summary of the results of [5] is provided here for
in robotics and large-scale systems. A particular promer@ompleteness

considered in the robotics’ literature is that of multi-age :

formation control, where agents usually represent meltipl In this paper, we further elaborate on the results of our
N e agents y Tep .Pprevious effort and provide additional results on distance

robots of similar dynamics that aim to converge to a specmeg

. . : ..based formations. In particular, for the case of cyclic ggp
pattern in the state space. The desired formation can l:xerelt% characterization of the resulting infinite equilibria bt

ﬁ:};ystem is derived relating the edges corresponding to €ycle
T i . . in the formation graph with the ones belonging to its span-
can be distinguished: position-based and distance-based fning tree. The result further highlights the role of cyclas i

mation control. In the first case, agents aim to converge E e equilibria of the system. Furthermore, the control laws

desired relative position vectors with respect to a SUbSS e redefined to take into account nonholonomic unicycle
of the rest of the team. Control designs that guarante[}?pe agents

position-based formation stabilization have appeared fo The rest of the paper is organized as follows: Section Ii

single integrator agents [7],[15] as well as nonholonomiﬁresems the system and formulates the problem treated in
agents [17]. On the other hand, distance-based formatio Ss paper, and the necessary mathematical background is

have been studied in the context of graph rigidity Whergresented in Section Ill. Section IV provides the contral la

a series of results have appeared in recent literature, e.g. :
) S nd reviews the results of [5], and proceeds to present the
[2], [19],[9], [13]. Roughly speaking, a formation is calle new relation regarding the equilibria of the system in the

rigid if the fact that all desired distances are met is sidfiti case of cyclic graphs. Nonholonomic agents are treated in

for the maintenance .Of the dlngnces of any pa.|r_of 98NSy ion V. Simulated examples are included in Section VI
Necessary and sufficient conditions for graph rigidity have

. . ; While the results are summarized in Section VII.

been provided in [8], [13]. The reader is also referred to

the recent PhD thesis [12] and the references therein for [I. SYSTEM AND PROBLEM STATEMENT

moreh 'n.fqg.?at:?n c;n th? tt?]plcl. Alx(c?mrlnct))n”factfrb_m _the We consider a group ofV kinematic agents operating

ggarll?rolrllgl\/vlsythla?rgrﬁ/ree tlrs{e a%ei?s t?) t%g :egiera dlithtJanc R®. Let g; € R* denote the position of agerit The
. . onfiguration space is spanned T q%]T. More-

Existing control laws such as the ones proposed in [2],[165 g P P Py- a1, an]

s : ver, each agent € NV is assigned a particular orientation
only have local validity for small perturbations around theoi € (=, 7). The objective of the control design is distance-
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assigned a scalar parametgf = d;; > 0, representing the This implies that\.,in (BT B) > 0, i.e., thatB B is positive

distance at which agenis; should converge to. Define the definite. <

set The matrixBT B was also defined as the “Edge Laplacian”

A . in [21] and its properties were used for providing another

®={q e R [ [lgi —qll = dij, V(i,) € E} (1) perspective to the agreement problem. In this paper, we will

of desired distance based formations. The problem is tise the decomposition @ B introduced in [21] to examine

derive control laws, for which the information available fo the resulting equilibria in the case of formation graphs tha

each agent is encoded inV;, that drive the agents to the contain cycles.

desired formation, i.elim; . q(t) = ¢* € ®. Consider a connected grapf. Similarly to [21], we
consider the partition of the incidence matrix

We first review in this section some elements of algebraic B=[Br Bc | @

graph theory [10] used in the sequel and also present a lemiRgere B, contains the edges of the spanning tree while
and a decompOSItlon that will be |mp0rtant for the Subsequeeontains the remaining edges of the graph_ From Lemma 1,

IIl. PRELIMINARIES

analysis. we know thatBY By is positive definite.
For an undirected grapf with N vertices theadjacency
matrix A = A(G) = (a;;) is the N x N matrix given by IV. CONTROL STRATEGY

a;;j = 1, if (i,j) € E anda;; = 0, otherwise. If there is  We provide first in this section the control strategy for
an edge(i,j) € E, theni,j are calledadjacent. A path  single integrator agents introduced in [5] and provide some
of lengthr from a vertexi to a vertex; is a sequence of complementary results. Assume that agents’ motion obeys
r+ 1 distinct vertices starting with and ending withj such  the single integrator model:

that consecutive vertices are adjacent. Fef j, this path

is called acycle. If there is a path between any two vertices G =ui e N={1,...,N} 3)

of the graphG, then G is called connected. A connected \\hereq; denotes the velocity (control input) for each agent.
grap_h is called dree if it cpntams no cycles. Aspannmg_ Denote bygi;(q) = [la — qj||2 the distance of any pair of
tree in a connected grapty is a tree subgraph that Coma'nsagents in the group. The claBsof formation potentialsy €

all the vertices ofG:. An orientation on the graphG is the 1 penween agentsand;j with j € N; is defined to have the
assignment of a direction to each edge. The gi@pé called following properties:

oriented if it is equipped with a particular orientation.€rTh
incidence matrix B = B(G) = (B;;) of an oriented graph
is the {0, +1}-matrix with rows and columns indexed by
the vertices and edges ¢!, respectively, such thaB;; = 5 9
1 if the vertexi is the head of the edgg B;; = —]1 if 3) (diy) = 0 and~y(8;;) > 0 for all g;; # d;.
the vertexi is the tail of the edgg, and0 otherwise. The Ve also define A 0v(Bs)

Laplacian matrix is given by L = BB” [10]. If the graphG pij = 861»]

contains cycles, then ity/cle space is the subspace spanned Y
by vectors representing cycles @ [11]. The edges of each Note thatp;; = p;;, for all i,5 € N,i # j. The proposed
cycle in G have a direction, where each edge is directegontrol law is

towards its successor according to the cyclic order. A cycle Ov(B;; ,

C is represented by a vectey with number of elements % = — Z W - Z 2pij (¢ — ¢;),i €N
equal to the number of edgég of the graph. For each edge, JEN: JEN: 4)
the corresponding element of is equal tol if the direction
of the edge with respect t0' coincides with the orientation
assigned to the graph for defining the incidence mafix
and —1, if the direction with respect t@’' is opposite to the

1) v : Rt — R* U {0} is a function of the distance
betweeni andj, i.e.,y = v(8;;),
2) v(B;;) is continuously differentiable,

The set of control laws (4) is written in stack vector form
asu = —2(R® Iy)q, whereu = [ul,... v%]" and the
symmetric matrixR is given by

orientation. The elements corresponding to edges ndt in —pijs J € Ni

are zero. WhileL is always positive semidefinite, the matrix Rij = .Z Pij, 1=

BT B can be either positive semidefinite or positive definite. JEN;:

The next lemma states that in the case of a tree graph, the 0, j & Ni

matrix BT B is always positive definite: Consider the candidate Lyapunov functioli(q) =

Lemma 1. If G is tree, thenB” B is positive definite. > > 7v(Bi;(q)). Its gradient can be computed & =
Proof: For arbitraryy € RM we havey” BTBy = |By|* i icNi L o
and hencey” BTBy > 0 if and only if By + 0, i.e., the 4(R ® I1) g, so that its time-derivative is given by
matrix B has empty null space. _For a <_:onnected graph, the V= 8|[(R® L) q||2 <0 )
cycle space of the graph coincides with the null space of _ . . o
B (Lemma 3.2 in [11]). This corresponds to the fact that The first easy consequence bfbeing negative semidefi-
for G, which has no cycles, zero is not an eigenvalueBof hite is the following Lemma:



Lemma 2. Consider system (3) driven by the control (4).Using the previous equation, the convergence properties of

Then the set ofSy, = {q|V(q) < Vi < oo} is positively the closed-loop system were established in the following
invariant for the trajectories of the closed-loop system.  theorem in [5]. We review here its proof since it will be
Proof: This is a consequence of (5. useful in the subsequent analysis:
We next consider the case when the formation potential is Theorem 4: [5] Assume that the system (3) evolves under
given as the control law (4) withy as in (6), and that the formation
(61] )2 graph is a tree. Then the agents are driven to the desired
v (Bi; (q) = 57 (6) formation, i.e.lim;_. q(t) = ¢* € ®.
" Proof (sketch): Since at steady stategj = u =
Note that this potential satisfies all properties of thelset _2 (R © I,) ¢ = 0, we also havej. = 0 for all e E
For this case we have and thusg = 0. Then (8) yields(BT BW ® I,) ¢ = 0. By
v(Bi;) i2j — d;‘j Lemma 1,B.TB i.s positive definite, and .thuS_/V ® I?) q=
Pii= o8, 2 (7) 0. SinceW is diagonal, the last equation is equivalent to

peqe = 0 for all e € E. Sincep, is scalar this impliep, = 0
The next result involves the fact that with this choice obr g, = 0. However, for alle € E we haveg.(t) # 0 for all
formation potential, communicating agents do not collidd a ¢ > 0, by virtue of Lemma 3. We conclude that = 0
there is a minimum separation distance between them whéar all e € E at steady state and hengg;, = df ,
the system starts withiiy: |lgi — g;]| = d;; for all (4, ) € E, by virtue of (7). <>
Lemma 3: Consider system (3) driven by the control (4) We next provide the result of [5] that states that the
with ~+ as in (6), and starting from a set of initial conditionstree structure is a necessary and sufficient condition for

So = {q|V(q) < Vh < oo}. Then it holds that global stabilization of distance based formations under th
negative gradient control law of the form (4). For any
0<& <fi;(t) <& choice of functiony e T, the closed-system dynamics
where are given byg = v = —2(R® I1) q,, or equivalently by
§ = —(B"BW®1I,)q in the edge space. The analysis
§12= (2d2 + Vo F \/4Vod; + V¢ ) leading to Theorem 4 guarantees tf&” BW @ I) g = 0
at steady state. By virtue of Lemma 1, the matiX B
for all (i, j) € £ and allt > 0. is non-singular only when the formation graph contains no

Proof: For every initial conditiong(0) € Sp, the time cycles. The following was derived in [5]:

derivative of V' remains non-positive for all > 0, by virtue Theorem 5: [5] Assume that the system (3) evolves under

of (5). HenceV (q(t)) < V(q(0)) < Vo < oo forallt>0. the control law (4) and thab is non-empty. Consider con-

Moreover, sincel’(q) = > > 7(Bi;(q)), we have that ditions (i) u(¢q) = 0 only for ¢ € ®, and (ii) lim; . q(t) =
AL qg* € ®. Then there exists a formation potentiak T" such

~v(Bi;) < Vo, sothat) < (6”[,7”) < ¢, which implied¢; < that (i),(ii) hold if and only if the formation graph is a tree
1 2 ) ) Proof (sketch): The “if” part is shown in Theorem 4, with the

Bij < & Wheregy o = 5 (2d; + Vo [4Vod}; + V¢ ) It choice of formation potential field (6). For the “only if p3rt

is easily seen that, is strlctly posmve.§> . .. assume that the closed-loop system has reached a steady stat
Lemmas 2 and 3, along with LaSalle’s Invariance PI’InCIp|%t whichu = 0. We will show that (i) cannot hold i€} is not

also imply that the system converges to the largest mvtanag tree. IfG is not a tree, theB” B is singular and then the

subset of the sef = ( 4|V (q) = 0} which corresponds to | space of3, and thusB” B, is nonempty. In fact, in this

u=-2(R®Iz)q =0, i.e., all agents eventually stop atcase, using properties of Kronecker products [14], [3], we

steady state. can show(BW ® I2) ¢ = 0. Using the notatiorz,y for the
We next review the results of [5] involving stabilization stack vectors of the elements @fn the z andy coordinates,

of distance based formations with the control law (4) and the last equation implie®Wz = BWg =0, i.e., Wz, Wy

given as in (6). belong to the null space @8. SinceG contains cycles, the
Denote byg the M-dimensional stack vector of relative null space of B is non-empty. Thus we cannot reach the

position differences of pairs of agents that form an edgeonclusion of the proof of Theorem 4 thg¥V ® I5)g = 0. In

in the formation graph, wher@/ is the number of edges, fact, equationsBWz = BW g = 0 have an infinite number

ie, M = |E| andgq = [q1 ,...,qM} where for an edge of solutions, sinceB” B is now singular. Thus condition (i)
e = (i,j) € E we haveg. = ¢; — g,. cannot hold ifG is not a tree. We conclude that (i) and (ii)
With simple calculations, we can derive thg = hold only if G is a tree.{
—2 (R ® I) q is equivalent to i
( 2)q a A. Cyclic Graphs
T _
- (B BW @ 12) q (8) In this section we further examine the equilibria of

distance-based formations with negative gradient control
laws for the case of graphs that contain cycles. Consider the
W =2 -diag {p,e € E} € RM*M partition (2). Then the edge vectgrcan also be partitioned

where the diagonal matrik/ is given by



as so that finally
= T =T 1T
= 9 _ _ _
7=la ] O G = W (BEBr) T BEBWo)r, © B)ae (13)

wheregr corresponds to the edges of the spanning tree al . . .
ar P g P 9 %e last equation provides the relation of all edges tha¢ hav

dc to the remaining ones. Similarly, the matri¥ = 2 - . . . .
gica {pese € E}Ictlsmg be decor:1plose)(ld as failed to converge to their desired values at steady state in
& 1P terms of the cycle edges of the graph.

Wr 0
W= 0 We V. NONHOLONOMIC AGENTS
Usina (2). we can also compute In this section we modify the control design of the previ-
9 () P ous sections in order to tackle with nonholonomic kinematic
BTR — BE [ B. B } unicycle agents. The control law used in [6] for agreement
| BE T ¢ of multiple nonholonomic agents is redefined in this case to
BYB;y BEBc treat distance based formation stabilzation. Agent maison
= [ BLBr BLBc } now described by the following nonholonomic kinematics:
so thatj = — (BT BW ® I,) g can be written as i = u; cos b;
. q ( 2)q yi;uisin@' gdeN={1,...,N}, (14)
qgr | | BE-Br BLBc Wr 0 qr 0;, = w;
ic | =\ BB, BB 0 we PR
c c whereu;,w; denote the translational and rotational velocity
or, equivalently of agent:, respectively.
- _ _ Define now
gr = —(BrBrWr ® I)gr — (B BcWe ® I)ge  (10)
io = (BB Wy ® L)ar — (BSBoWe © L)ie (11) vila) = J; ¥(Bi3(2))
Sincegr = gc = 0 at steady state, we get for each agent € N. We can now use the control design
(BB W @ I — (BEBrWe @ L) — 0 of [6] f(_)r the p.roblt'am in hand. Specifically, the followmg
(Br BrWr @ L)ar = (Br BoWe ® Iz)ge discontinuous time-invariant feedback control law is ufed
and sinceB%BT is positive definite, we have each agent:
(Wr @ I)gr = —((B1.Br) " 'BE.BcWe @ I)ge  (12) u; = —sgn {yzi cosb; + vy sinb;} - (’yﬁz + 'y;) 1/2 , (15)
at steady state. wi = —(0; — Onn,), (16)
We can further characterize the infinite solutions of equa-
tion § = — (BTBW ® I,) q in the case of cyclic graphs where ;i
using (12). For & x [ matrix M, andk < n, let (M) Vai = 5= 2 Z pij (s — x5)
denote thek x n matrix that includes the lagt rows of M. ! JEN;
From the proof of Theorem 4 we know that for each edge i
e we have eithep. = 0 at steady state, in the case that this Vyi = ;i =2 Z pij (Yi — Y;)
edge has converged to the desired relative distance for the ! JEN;

agents that constitute it, gr. 7 0 in the case it has not. and ¢,,,, = arctan? (y,,7.:). Then the following result

Partition now the set of edges correspondingtoas holds:

}T Theorem 6: Consider the system of nonholonomic agents
(14) with the control law (15),(16). Then the agents are

where gr, corresponds to the edges that have successfulliyiven to the set

converged to the desired distance afid to the ones that
9 ang Sun={(q,0): (BTBW @ L) §=0,0, = ... =0y =0}

have not. Ledim(gr, ) = Ts anddim(gr,) = T,,. Then the S .
the matrixT¥; will have the block diagonal form _Proof. Using the same steps as in the proof of The_zorem_ 4
in [6], we deduce that the agents converge to a configuration
0 0 where v,; = 7, = 0 for all ¢ with zero orientations.
0 Wr, The result now follows from the fact that,; = v,; = 0

since the edges that have converged to the desired vaIJ<85Ta” ! |mpI|e§ 2(R ® Ip)q = 0 which furter implies
render the corresponding elements@fequal to zero. Mor- B BW® 12) 7=0.¢ :

ever,Wr, is invertible, since all the elements of this diagonal H?”Ce the control design (15)’(16) forces the nonholo-
matrix are nonzero (since they correspond to edges that haVe™'® multi-agent system to behave in exactly the same way

not reached the desired distance). Then the followingiogiat as in thg_smgle mtegra;or case. Thus, the re_sults reggrdin
holds for gz : the equilibria of the distance based formation controller

discussed in the previous sections hold in the nonholonomic
(Wr, @ I)gr, = —(((BEBr) 'BLBcWe)r, ® I)go case as well.

ar=[ ar. k.

wr = |
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Fig. 1. Example of three single integrator agents from [5]e Tésulting
configuration belongs to the cycle space of the graph and mimesoincide

with a point in . Fig. 2. The three agents now have nonholonomic kinematics amd a
controlled by (15),(16). The system converges to the deédinal formation
from the same initial conditions as in the single integra@msec

VI. SIMULATIONS

The results of the paper are supported in this section k
computer simulations. The purpose of these examples is 08 f
show the effect of the nonholonomic kinematics and th 3
communication topology to the resulting equilibria. or e

In the first simulation we provide a comparison of the 04l
single integrator and nonholonomic unicycle cases. We fir: e
consider the example taken from [5] where the contro >, °2f
law (4) failed to stabilize a system of three single inte-
grator agents to a desired triangular formation. The grap

"\.\

considered is a complete cycle graph,i.&; = {2,3}, o0z} ¢ 2.5
Ny = {1,3}, N3 = {2,3}, andd3, = d33 = d3; = V2. Mg ®
The agents start from initial positiong;(0) = [0,0]7, oA

q2(0) = [-1,0]T and ¢3(0) = [1,0]7. The evolution in the
single integrator case is depicted in Figure 1, taken fror
[5], where the crosses represent the initial positions ef th
agents and their final locations are_noted by a black F:irclle_ig_ 3. Four agents with control law (4),(6) and a completarfation

The system converges to an undesired steady state givendppn reach a rectangular formation.

q1 = [0,0]T, g2 = [-0.6866,0]7 andgs = [0.6866,0]7. The

edge distances satisfBW ® I5)g = 0 and (W & I1)q # 0,

and thus the desired formation is not reached. The exact same VIl. CONCLUSIONS

initial positions are used in Figure 2, where we now consider

nonholonomic agents driven by (15),(16). As witnessed in In this paper we provided new results for distance based
the figure, the agents in the nonholonomic case Convergef@mation control. In particular, we examined the relation
the desired triangular formation. Thus the undesirable skt between the cycle space of the formation graph and the re-
initial conditions that are attractors to the cycle spaceéhef sulting equilibria of cyclic formations. Moreover, the uvits
graphG are different than the single integrator case. This i§€ extended to the case of distance based formation con-
due to the nonholonomic constraints in the agents’ motiofio! for nonholonomic agents. Finally, computer simulatio

in the second case. supported the derived results.

The next example involves four single integrator agents. In Future work will focus on further exploring the role of
the first example we have a a complete graph and a rectdhe cycle space and the incidence matrix in other cooperativ
gular formation, to which the agents do indeed converge, &ntrol problems.
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1,3 and 2,4 the resulting equilibria are now shown in Figure REFERENCES
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