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Abstract— In this work, we present a solution to the distance-
based formation maneuvering problem of multiple nonholo-
nomic unicycle-type robots. The control law is designed at
the kinematic level and is based on the rigidity properties
of the graph modeling the sensing/control interactions among
the robots. A simple input transformation is used to facilitate
the control design by converting the nonholonomic model into
the single-integrator equation. The resulting control ensures
exponential convergence to the desired formation while the
formation maneuvers according to a desired, time-varying
translational velocity. An experimental implementation of the
proposed control law is conducted on the Robotarium testbed.

I. INTRODUCTION

The field of decentralized control of multi-agent systems

is an ongoing topic of interest to control and robotics

researchers. Formation control is a type of coordinated

behavior where mobile agents are required to autonomously

converge to a specified spatial pattern. Many coordinated

tasks, such are target interception, element tracking, and

exploration, also require that the formation maneuver as a

virtual rigid body. Such maneuvers can include translation,

rotation, or the combination of both.

Formation control algorithms have been designed for

different models of the agent motion. Most results are

based on point-mass type models, such as the single- and

double-integrator models. For example, see [19], [29], [47]

for single-integrator results and [10], [11], [36], [44] for

double-integrator results. On the other hand, some results

have used more sophisticated models that account for the

agent kinematics/dynamics. One of two models are used in

these cases: the fully-actuated (holonomic) Euler-Lagrange

model, which includes robot manipulators, spacecraft, and

some omnidirectional mobile robots; or the nonholonomic

(underactuated) model, which accounts for velocity con-

straints that typically occur in the vehicle motion (e.g.,

differentially-driven wheeled mobile robots and air vehicles).

In the nonholonomic case, models can be further subdivided

into two categories: the purely kinematic model where the

control inputs are at the velocity level, and the dynamic

model where the inputs are at the actuator level. Examples of

work based on the Euler-Lagrange model include [9], [12],

[14], [27], [30], [37], [45], [46]. Formation control results
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based on nonholonomic kinematic models can be found in

[5], [33], [35], [41]. Designs for nonholonomic dynamic

models appeared in [13], [17], [18], [20], [31].

Translational maneuvering and target interception con-

trollers were introduced in [8], [7] for the single- and

double-integrator models, respectively, using the distance-

based, rigid graph approach from [29]. A 2D formation

maneuvering controller was proposed in [4] for the double-

integrator model where the group leader, who has inertial

frame information, passes the information to other agents

through a directed path in the graph. A limitation of this

control is that it becomes unbounded if the desired formation

maneuvering velocity is zero. In [25], a leader-follower type

solution was given to the formation maneuvering problem

based on the nonholonomic kinematics of unicycle robots.

A consensus scheme was presented in [22] using both the

single- and double-integrator models where the formation

translation velocity is constant and known to only two

leader agents. In [40], the translational maneuvering strategy

involved a leader with a constant velocity command and

followers who track the leader while maintaining the forma-

tion shape. The control law, which was based on the single-

integrator model, consisted of the standard gradient descent

formation acquisition term plus an integral term to ensure

zero-steady error with respect to the velocity command. In

[43], for agents modeled by double integrators, a flocking

controller was designed that allows all agents to both achieve

the same velocity and reach a desired formation in finite time.

A similar problem was addressed in [15] but with asymptotic

formation acquisition and velocity consensus. Recently in

[32], a controller was proposed using the single-integrator

model that can steer the entire formation in rotation and/or

translation in 3D. The rotation component was specified

relative to a body-fixed frame whose origin is at the centroid

of the desired formation and needs to be known.

In formation control, a key aspect is whether the controlled

variables are the relative position vector of the agents or

the inter-agent distances (i.e., norm of the relative position).

The latter approach has the advantage that relative position

measurements can be done in an arbitrary coordinate frame,

whereas the former requires the measurements in a global

coordinate frame [42]. The distance-based control framework

has been mostly applied to the single- and double-integrator

models. To the best of our knowledge, the only exception are

the results in [16], [48] which considered the nonholonomic

kinematic model in the design of a formation acquisition con-

troller. In this paper, we apply the distance-based approach

to the translational maneuvering of nonholonomic kinematic
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agents in the form of unicycle-type vehicles. Similar to

[16], we use a simple input transformation to convert the

nonholonomic multi-agent system into the single-integrator

system. As a result, we can apply the formation maneuvering

controller from [8] to ensure that the desired formation is

acquired and maneuvers according to a given translational

velocity. We then present an experimental evaluation of the

proposed control scheme using the wheeled robot platform

GRITSBot [38]. The results show the successful implemen-

tation of the formation control algorithm.

II. BACKGROUND MATERIAL

An undirected graph G is a pair (V,E) where V =
{1, 2, ..., n} is the set of nodes and E ⊂ V × V is the

set of undirected edges that connect two different nodes,

i.e., if node pair (i, j) ∈ E then so is (j, i). We let a ∈
{1, . . . , N(N − 1)/2} denote the total number of edges in

E. The set of neighbors of node i is denoted by

Ni(E) = {j ∈ V | (i, j) ∈ E}. (1)

If pi ∈ R2 is the coordinate of node i, then a framework

F is defined as the pair (G, p) where p = [p1, . . . , p2] ∈
R2n. In the following, we assume all frameworks have

generic properties, i.e., the properties hold for almost all

of the framework representations. This is done to exclude

certain degenerate configurations such as frameworks that

lie in a hyperplane (see [21] for a detailed study of generic

framework).

Based on an arbitrary ordering of edges, the edge function

φ : R2n → Ra is given by

φ(p) =
[
..., ‖pi − pj‖2 , ...

]
, (i, j) ∈ E (2)

such that its kth component, ‖pi − pj‖2, relates to the kth

edge of E connecting the ith and jth nodes. The rigidity

matrix R : R2n → Ra×2n is given by

R(p) =
1

2

∂φ(p)

∂p
(3)

where rank[R(p)] ≤ 2n− 3 [2].

An isometry of R2 is a bijective map T : R2 → R2
satisfying [23]

‖w − z‖ = ‖T (w)− T (z)‖ , ∀w, z ∈ R2. (4)

This map includes rotations and translations of the vector w−
z. Two frameworks are said to be isomorphic in R2 if they

are related by an isometry. In this paper, we will represent

the collection of all frameworks that are isomorphic to F by

Iso(F ). It is important to point out that (2) is invariant under

isomorphic motions of the framework.

Frameworks (G, p) and (G, p̂) are equivalent if φ(p) =
φ(p̂), and are congruent if ‖pi − pj‖ = ‖p̂i − p̂j‖, ∀i, j ∈ V
[24]. The necessary and sufficient condition for a generic

framework (G, p) to be infinitesimally rigid is rank[R (p)] =
2n−3 [23]. An infinitesimally rigid framework is minimally

rigid if and only if a = 2n − 3 [1]. If the infinitesimally

rigid frameworks (G, p) and (G, p̂) are equivalent but not

Fig. 1. Top view of the unicycle agent.

congruent, then they are referred to as ambiguous [1]. The

notation Amb(F ) will be used here to represent the collection

of all frameworks that are ambiguous to the infinitesimally

rigid framework F . All frameworks in Amb(F ) are also

assumed to be infinitesimally rigid. According to [1] and

Theorem 3 of [3], this assumption holds almost everywhere;

therefore, it is not restrictive.

Lemma 1: [10] Consider two frameworks F = (G, p) and

F̄ = (G, p̄) sharing the same graph G = (V,E) and the

function

Λ(F̄ , F ) =
∑

(i,j)∈E

(‖p̄i − p̄j‖ − ‖pi − pj‖)2 . (5)

If F is infinitesimally rigid and Λ(F̄ , F ) ≤ ε where ε
is a sufficiently small positive constant, then F̄ is also

infinitesimally rigid.

Lemma 2: [8] For any x ∈ R2, R(p)(1n ⊗ x) = 0 where

1n is the n× 1 vector of ones.

Finally, the following metric will be used to denote the

"distance" between a point and a set:

dist (ζ,M) = inf
x∈M

‖ζ − x‖ (6)

for points ζ, x ∈ R2 and a set M.

III. SYSTEM MODEL

Consider a system of n agents moving autonomously on

the plane. Figure 1 depicts the ith agent, where the reference

frame {X0, Y0} is fixed to the Earth. The moving reference

frame {Xi, Yi} is attached to the ith vehicle with the Xi

axis aligned with its heading (longitudinal) direction, which

is given by angle θi and measured counterclockwise from the

X0 axis. Point Ci denotes the ith vehicle’s center of mass

which is assumed to coincide with its center of rotation.

We assume the agent motion is governed by the following

nonholonomic, unicycle kinematic model

q̇i = S(θi)ηi, i = 1, ..., n. (7)

In (7), qi = [xi, yi, θi] denotes the position and orientation

of {Xi, Yi} relative to {X0, Y0}, ηi = [vi, ωi] is the control

input, vi is the ith agent’s translational speed in the direction
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of θi, ωi is the ith agent’s angular speed about the vertical

axis passing through Ci, and

S(θi) =

cos θi 0
sin θi 0

0 1

 . (8)

IV. PROBLEM STATEMENT

Consider that the agents’ target formation is modeled by

the framework F ∗ = (G∗, p∗) where G∗ = (V ∗, E∗),

dim(V ∗) = n, dim(E∗) = a, p∗ = [p∗1, . . . , p
∗
n], and

p∗i = [x∗i , y
∗
i ]. The fixed target distance separating the ith

and jth agents is given by

dij =
∥∥p∗i − p∗j∥∥ > 0, i, j ∈ V ∗. (9)

We assume F ∗ is constructed to be infinitesimally and min-

imally rigid. The actual formation of the agents is encoded

by the framework F (t) = (G∗, p(t)) where p = [p1, . . . , pn]
and pi = [xi, yi].

The statement of our control problem is the following.

Translational Maneuvering Problem: The agents need to

acquire and maintain a pre-defined geometric shape in the

plane while simultaneously moving with a given velocity.

That is,

F (t)→ Iso (F ∗) as t→∞, (10)

which is equivalent to

‖pi(t)− pj(t)‖ → dij as t→∞, i, j ∈ V ∗ (11)

due to the framework rigidity, and

ṗi(t)− vt(t)→ 0 as t→∞, i = 1, ..., n (12)

where vt ∈ R2 is any continuously differentiable function

of time representing the desired translational velocity. We

assume vt and v̇t are bounded for all time.

V. TRANSLATIONAL MANEUVERING CONTROL

Before presenting the control scheme, we introduce several

error variables.

The relative position of agents i and j is defined as

p̃ij = pi − pj , (13)

while their distance error is captured by the variable [29]

zij = ‖p̃ij‖2 − d2ij . (14)

Given that ‖p̃ij‖ ≥ 0, note that zij = 0 if and only if ‖p̃ij‖ =
dij . Finally, let

θ̃i = θi − θdi (15)

where θdi denotes the desired heading direction, which is to

be specified later.

Theorem 1: Let the initial conditions for the distance

errors be z(0) ∈ Ω1 ∩ Ω2

Ω1 = {z ∈ Ra | Λ(F, F ∗) ≤ δ}

Ω2 = {z ∈ Ra | dist(p, Iso(F )) < dist(p,Amb(F ∗))} ,
(16)

z = [..., zij , ...] ∈ Ra, (i, j) ∈ E∗ is ordered as (2), and δ
is a sufficiently small positive constant. Then, the kinematic

control law

vi = uix cos θi + uiy sin θi (17a)

ωi = −βiθ̃i + θ̇di , i ∈ Vd (17b)

ui =

[
uix
uiy

]
= −k

∑
j∈Ni(E∗)

p̃ijzij + vt (17c)

θdi =

{
0, if uix = uiy = 0
atan2(uiy, uix), otherwise,

(17d)

where βi and k are positive constant control gains, ensures

(z, θ̃i) = 0 for all i ∈ V ∗ is exponentially stable and that

(10) and (12) hold.

Proof: We first decompose (7) as follows

ṗi =

[
vi cos θi
vi sin θi

]
(18)

θ̇i = ωi. (19)

Using (17a) and (17d) in (18), one can see that

ṗi = ui. (20)

Now, consider the Lyapunov function candidate

V =
1

4

∑
(i,j)∈E∗

z2ij =
1

4
zᵀz. (21)

Since

żij =
d

dt

(
p̃ᵀij p̃ij

)
= 2p̃ᵀij (ui − uj) (22)

from (14), the derivative of (21) is given by

V̇ =
∑

(i,j)∈E∗

zij p̃
ᵀ
ij (ui − uj) = zᵀR(p)u (23)

where (3) was used and u = [u1, . . . , un] ∈ R2n.

From (17c), we have that

u = −kRᵀ(p)z + 1n ⊗ vt. (24)

Substituting (24) into (23) yields

V̇ = −kzᵀR(p)Rᵀ(p)z (25)

where Lemma 2 was used. Given that F ∗ and F (t) have

the same edge set and F ∗ is minimally rigid by design, then

F (t) is minimally rigid for all t ≥ 0. Moreover, from Lemma

1 and the fact that F ∗ is infinitesimally rigid, we know F (t)
is infinitesimally rigid for z(t) ∈ Ω1. Therefore, R (p) has

full row rank and

V̇ ≤ −kλzᵀz for z(t) ∈ Ω1 (26)

where λ = inf
t
λmin (RRᵀ) > 0 and λmin represents the

minimum eigenvalue. From (26), we know that V̇ (t) ≤
0 for all t ≥ 0, which implies that V (t) ≤ V (0) for

all t > 0. Therefore, since z(t) ∈ Ω1 is equivalent to

z(t) ∈
{
z ∈ R2n | V (z) ≤ c

}
according to Lemma 2 of [9],

a sufficient condition for (26) is given by

V̇ ≤ −4kλV for z(0) ∈ Ω1. (27)
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From (27), we know that z = 0 is exponentially stable for

z(0) ∈ Ω1 ∩ Ω2 [26], and therefore (11) is met.

The exponential stability of z = 0 infers one of two

possible occurrences: F (t)→ Iso(F ∗) or F (t)→ Amb(F ∗)
as t → ∞. Since the initial condition is such that z(0) ∈
Ω1 ∩ Ω2, then we have from (16) that

dist(q(0), Iso(F ∗(0))) < dist(q(0),Amb(F ∗(0))). (28)

It follows from this condition that the energy function (21)

would necessarily have to increase for a certain time interval

for F (t) → Amb(F ∗) as t → ∞ to occur. This is however

contradictory to the fact that V (t) is nonincreasing for all

time. Thus, we conclude that F (t)→ Iso(F ∗) as t→∞ for

z(0) ∈ Ω1 ∩ Ω2.

Since z(t) is bounded, we know from (14) that p̃ij(t),

(i, j) ∈ E∗ is bounded. Therefore, since z(t)→ 0 as t→∞,

we know from (17c) and (20) that ṗi(t) − vt(t) → 0 as

t→∞ for ∀i ∈ V ∗.
Finally, after taking the derivative of (15) and substituting

(19) and (17b), we obtain

·
θ̃i = −βiθ̃i, (29)

which indicates that θ̃i = 0, ∀i ∈ V ∗ is exponentially stable.

Remark 1: The time derivative of (17d), which is needed

in (17b), can be calculated as follows

θ̇di =

{
0, if uix = uiy = 0
−uiy

u2ix+u
2
iy
u̇ix + uix

u2ix+u
2
iy
u̇iy, otherwise

(30)

where

u̇i = −k
∑

j∈Ni(E∗)

(
zij + 2p̃ij p̃

ᵀ
ij

)
(ui − uj) + v̇t (31)

and (20) and (22) were used.

Remark 2: The proposed control scheme assumes that the

time-varying velocity vt(t) is known to all agents. This is

not an overly restrictive assumption since in many cases this

information is known beforehand and can pre-programmed

into the agents’ onboard computer. Note that for the case

where vt is constant and only available to a subset of agents,

one can use a distributed observer to estimate the desired

flocking velocity by exploiting the connectedness of the

formation graph [34].

Remark 3: The control (17) is time invariant and dis-

continuous, which is expected by Brockett’s condition for

stabilization of nonholonomic systems [6]. Interestingly, the

experimental study in [28] has shown that such controllers

can yield better performance than time-varying, continuous

controls if carefully implemented on unicycle-type robots.

VI. EXPERIMENTAL RESULTS

To demonstrate the performance of the kinematic con-

troller from Section V, we conducted an experiment on

the Robotarium system [39], which is a swarm robotics

testbed located at the Georgia Institute of Technology that

uses the GRITSBot as the mobile robot platform [38]. The

testbed arena has a 8× 12 ft2 area on which multiple robots

can be deployed. The GRITSBot is a low-cost, wheeled

robot equipped with a suite of onboard sensors, wireless

communication, battery, and processing boards, and has a

footprint of approximately 3× 3 cm2. An overhead camera

and a unique identification tag atop each robot’s chassis

provide a position tracking system for their motion. A picture

of Robotarium and the GRITSBot are shown in Figure 2.

Robotarium is ideal for testing kinematic control laws since

it uses velocity-level commands as inputs to the robots with

the low-level, velocity control loop being invisible to the

user.

Fig. 2. The Robotarium (left) and the GRITSBot (right).

The experiment was conducted with five robots. The

desired formation F ∗ was set to a regular penta-

gon, which was made infinitesimally and minimally

rigid by introducing seven edges such that E∗ =
{(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (3, 4), (4, 5)}. The desired

distances between all robots were given by d12 = d23 =
d34 = d45 = d15 = α

√
2(1− c1) and d13 = d14 =

α
√

2(1 + c2) where α = 0.1 m, s1 = sin 2π
5 , s2 = sin 4π

5 ,

c1 = cos 2π5 , and c2 = cos π5 . The formation was required

to move as a virtual rigid body around a circle. To this end,

the desired translational maneuvering velocity was chosen as

vt(t) = [−rb sin bt, rb cos bt] m/s where r = 0.15 m is the

radius for the circular trajectory and b = 0.3 rad/s. Figure

3 depicts the desired formation and desired maneuver. The

initial positions and orientations of the robots were randomly

selected. The control gains in (17b) and (17c) were set to

βi = 10, i = 1, ..., 5, and k = 6.

Snapshots of the formation at t = 0 s and t = 32 s are

given in Figure 4 showing that the desired formation was

successfully acquired from the random initial configuration.

The path of the geometric center of the formation as it

maneuver in the circle is shown in Figure 5. Figure 6

shows the inter-agent distance errors and heading angle errors

quickly converging to approximately zero. The errors are

not exactly zero due to measurement noise and the sensor

resolution. We can observe from the errors that the desired

formation is acquired after approximately 25 s. The control

inputs are depicted in Figure 7, where one can see that

vi(t) → rb = 4.5 cm/s as t → ∞ for all i. The steady-

state values for ωi(t), i = 1, ..., 5, are approximately 0.5
rad/s rather than the expected value of b = 0.3 rad/s. This

can be explained from (17b) by the facts that a) the term
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Fig. 3. Desired pentagon formation along with desired circular trajectory

for the geometric center.

Fig. 4. Snapshots of the initial formation (left) and the formation when

the desired formation was acquired (right).

βiθ̃i(t) does not approach zero as t → ∞ due to the small

steady-state offset and fluctuation in θ̃i, and b) the term θ̇di(t)
does not approach 0.3 as t → ∞ due to the manner in

which (30) is calculated. Also, notice from Figure 7 that

the Robotarium testbed limits the robot’s linear velocity

to ±10 cm/s. A video of the experiment can be seen in

https://youtu.be/2EV_SUpvsrk.

VII. CONCLUSION

This paper demonstrated how the distance-based, forma-

tion maneuvering controller, originally designed for single-

integrator models, can be applied to nonholonomic kinematic

agents. An input transformation along with a Lyapunov

analysis showed that the proposed control ensures exponen-

tial convergence to the desired formation while maneuvering

according to the desired translational velocity. An experimen-

tal validation of the formation control scheme was presented

using unicycle-type robotic vehicles.
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