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Abstract— An important class of multi-robot formations is
specified by desired distances between adjacent robots. In
previous work, we showed that distance-based formations can
be globally stabilized by negative gradient, potential field based,
control laws, if and only if the formation graph is a tree. In this
paper, we further examine the relation between the cycle space
of the formation graph and the resulting equilibria of cyclic
formations. In addition, the results are extended to the case of
distance based formation control for nonholonomic agents. The
results are supported through computer simulations.

I. I NTRODUCTION

Decentralized control of networked multi-agent systems is
a field of increasing research interest, due to its applications
in robotics and large-scale systems. A particular problem
considered in the robotics’ literature is that of multi-agent
formation control, where agents usually represent multiple
robots of similar dynamics that aim to converge to a specified
pattern in the state space. The desired formation can be either
static [4],[7] or moving with constant velocity [18],[20].

Two main approaches in the formation control literature
can be distinguished: position-based and distance-based for-
mation control. In the first case, agents aim to converge to
desired relative position vectors with respect to a subset
of the rest of the team. Control designs that guarantee
position-based formation stabilization have appeared for
single integrator agents [7],[15] as well as nonholonomic
agents [17]. On the other hand, distance-based formations
have been studied in the context of graph rigidity where
a series of results have appeared in recent literature, e.g.,
[2], [19],[9], [13]. Roughly speaking, a formation is called
rigid if the fact that all desired distances are met is sufficient
for the maintenance of the distances of any pair of agents.
Necessary and sufficient conditions for graph rigidity have
been provided in [8], [13]. The reader is also referred to
the recent PhD thesis [12] and the references therein for
more information on the topic. A common factor in the
graph rigidity literature is the lack of globally stabilizing
control laws that drive the agents to the desired distance.
Existing control laws such as the ones proposed in [2],[16]
only have local validity for small perturbations around the
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desired formation, while the control law in [1] refers solely to
triangular formations. Motivated by this, in the recent paper
[5] we examined the stabilization issue for distance-based
formations. A negative gradient control law was proposed
based on a potential function between each of the pairs
of agents that form an edge in the formation graph. The
first result of that paper stated that the system is stabilized
to the desired formation provided that the formation graph
is a tree. The second result of [5] stated that this was in
fact also a necessary condition: the multi-robot system is
globally stabilizable to the desired formation with negative
gradient control laws if and only if the formation graph is
a tree. A summary of the results of [5] is provided here for
completeness.

In this paper, we further elaborate on the results of our
previous effort and provide additional results on distance
based formations. In particular, for the case of cyclic graphs,
a characterization of the resulting infinite equilibria of the
system is derived relating the edges corresponding to cycles
in the formation graph with the ones belonging to its span-
ning tree. The result further highlights the role of cycles in
the equilibria of the system. Furthermore, the control laws
are redefined to take into account nonholonomic unicycle
type agents.

The rest of the paper is organized as follows: Section II
presents the system and formulates the problem treated in
this paper, and the necessary mathematical background is
presented in Section III. Section IV provides the control law
and reviews the results of [5], and proceeds to present the
new relation regarding the equilibria of the system in the
case of cyclic graphs. Nonholonomic agents are treated in
Section V. Simulated examples are included in Section VI
while the results are summarized in Section VII.

II. SYSTEM AND PROBLEM STATEMENT

We consider a group ofN kinematic agents operating
in R

2. Let qi ∈ R
2 denote the position of agenti. The

configuration space is spanned byq = [qT
1 , . . . , qT

N ]T . More-
over, each agenti ∈ N is assigned a particular orientation
θi ∈ (−π, π]. The objective of the control design is distance-
based formation control. Each agent can only communicate
with a specific subsetNi ⊂ N . By convention,i /∈ Ni. The
desired formation can be encoded in terms of an undirected
graph, from now on called theformation graph G = {N , E},
whose set of verticesN = {1, ..., N} is indexed by the
team members, and whose set of edgesE = {(i, j) ∈
N × N|j ∈ Ni} contains pairs of vertices that represent
inter-agent formation specifications. Each edge(i, j) ∈ E is



assigned a scalar parameterdij = dji > 0, representing the
distance at which agentsi, j should converge to. Define the
set

Φ
∆
=

{

q ∈ R
2N | ||qi − qj || = dij , ∀ (i, j) ∈ E

}

(1)

of desired distance based formations. The problem is to
derive control laws, for which the information available for
each agenti is encoded inNi, that drive the agents to the
desired formation, i.e.,limt→0 q(t) = q∗ ∈ Φ.

III. PRELIMINARIES

We first review in this section some elements of algebraic
graph theory [10] used in the sequel and also present a lemma
and a decomposition that will be important for the subsequent
analysis.

For an undirected graphG with N vertices theadjacency
matrix A = A(G) = (aij) is the N × N matrix given by
aij = 1, if (i, j) ∈ E and aij = 0, otherwise. If there is
an edge(i, j) ∈ E, then i, j are calledadjacent. A path
of length r from a vertexi to a vertexj is a sequence of
r +1 distinct vertices starting withi and ending withj such
that consecutive vertices are adjacent. Fori = j, this path
is called acycle. If there is a path between any two vertices
of the graphG, then G is called connected. A connected
graph is called atree if it contains no cycles. Aspanning
tree in a connected graphG is a tree subgraph that contains
all the vertices ofG. An orientation on the graphG is the
assignment of a direction to each edge. The graphG is called
oriented if it is equipped with a particular orientation. The
incidence matrix B = B(G) = (Bij) of an oriented graph
is the {0,±1}-matrix with rows and columns indexed by
the vertices and edges ofG, respectively, such thatBij =
1 if the vertex i is the head of the edgej, Bij = −1 if
the vertexi is the tail of the edgej, and0 otherwise. The
Laplacian matrix is given byL = BBT [10]. If the graphG
contains cycles, then itscycle space is the subspace spanned
by vectors representing cycles inG [11]. The edges of each
cycle in G have a direction, where each edge is directed
towards its successor according to the cyclic order. A cycle
C is represented by a vectorvC with number of elements
equal to the number of edgesM of the graph. For each edge,
the corresponding element ofvC is equal to1 if the direction
of the edge with respect toC coincides with the orientation
assigned to the graph for defining the incidence matrixB,
and−1, if the direction with respect toC is opposite to the
orientation. The elements corresponding to edges not inC
are zero. WhileL is always positive semidefinite, the matrix
BT B can be either positive semidefinite or positive definite.
The next lemma states that in the case of a tree graph, the
matrix BT B is always positive definite:

Lemma 1: If G is tree, thenBT B is positive definite.
Proof : For arbitraryy ∈ R

M we haveyT BT By = |By|2
and henceyT BT By > 0 if and only if By 6= 0, i.e., the
matrix B has empty null space. For a connected graph, the
cycle space of the graph coincides with the null space of
B (Lemma 3.2 in [11]). This corresponds to the fact that
for G, which has no cycles, zero is not an eigenvalue ofB.

This implies thatλmin(BT B) > 0, i.e., thatBT B is positive
definite.♦

The matrixBT B was also defined as the “Edge Laplacian”
in [21] and its properties were used for providing another
perspective to the agreement problem. In this paper, we will
use the decomposition ofBT B introduced in [21] to examine
the resulting equilibria in the case of formation graphs that
contain cycles.

Consider a connected graphG. Similarly to [21], we
consider the partition of the incidence matrix

B = [ BT BC ] (2)

whereBT contains the edges of the spanning tree whileBC

contains the remaining edges of the graph. From Lemma 1,
we know thatBT

T BT is positive definite.

IV. CONTROL STRATEGY

We provide first in this section the control strategy for
single integrator agents introduced in [5] and provide some
complementary results. Assume that agents’ motion obeys
the single integrator model:

q̇i = ui, i ∈ N = {1, . . . , N} (3)

whereui denotes the velocity (control input) for each agent.
Denote byβij(q) = ‖qi − qj‖2 the distance of any pair of
agents in the group. The classΓ of formation potentialsγ ∈
Γ between agentsi andj with j ∈ Ni is defined to have the
following properties:

1) γ : R
+ → R

+ ∪ {0} is a function of the distance
betweeni and j, i.e., γ = γ(βij),

2) γ(βij) is continuously differentiable,
3) γ(d2

ij) = 0 andγ(βij) > 0 for all βij 6= d2
ij .

We also define

ρij
∆
=

∂γ(βij)

∂βij

Note thatρij = ρji, for all i, j ∈ N , i 6= j. The proposed
control law is

ui = −
∑

j∈Ni

∂γ(βij(q))

∂qi
= −

∑

j∈Ni

2ρij (qi − qj), i ∈ N

(4)
The set of control laws (4) is written in stack vector form

as u = −2 (R ⊗ I2) q, whereu = [uT
1 , . . . , uT

N ]T and the
symmetric matrixR is given by

Rij =











−ρij , j ∈ Ni
∑

j∈Ni

ρij , i = j

0, j /∈ Ni

Consider the candidate Lyapunov functionV (q) =
∑

i

∑

j∈Ni

γ(βij(q)). Its gradient can be computed as∇V =

4 (R ⊗ I2) q, so that its time-derivative is given by

V̇ = −8 ‖(R ⊗ I2) q‖2 ≤ 0 (5)

The first easy consequence ofV̇ being negative semidefi-
nite is the following Lemma:



Lemma 2: Consider system (3) driven by the control (4).
Then the set ofS0 = {q|V (q) < V0 < ∞} is positively
invariant for the trajectories of the closed-loop system.
Proof: This is a consequence of (5).♦

We next consider the case when the formation potential is
given as

γ (βij (q)) =

(

βij − d2
ij

)2

βij
(6)

Note that this potential satisfies all properties of the setΓ.
For this case we have

ρij =
∂γ(βij)

∂βij
=

β2
ij − d4

ij

β2
ij

(7)

The next result involves the fact that with this choice of
formation potential, communicating agents do not collide and
there is a minimum separation distance between them when
the system starts withinS0:

Lemma 3: Consider system (3) driven by the control (4)
with γ as in (6), and starting from a set of initial conditions
S0 = {q|V (q) < V0 < ∞}. Then it holds that

0 < ξ1 < βij(t) < ξ2

where

ξ1,2 =
1

2

(

2d2
ij + V0 ∓

√

4V0d2
ij + V 2

0

)

for all (i, j) ∈ E and all t ≥ 0.
Proof: For every initial conditionq(0) ∈ S0, the time
derivative ofV remains non-positive for allt ≥ 0, by virtue
of (5). HenceV (q(t)) ≤ V (q(0)) < V0 < ∞ for all t ≥ 0.

Moreover, sinceV (q) =
∑

i

∑

j∈Ni

γ(βij(q)), we have that

γ(βij) < V0, so that0 ≤ (βij−d2

ij)
2

βij
≤ c, which impliedξ1 <

βij < ξ2 whereξ1,2 = 1

2

(

2d2
ij + V0 ∓

√

4V0d2
ij + V 2

0

)

. It
is easily seen thatξ1 is strictly positive.♦

Lemmas 2 and 3, along with LaSalle’s Invariance Principle
also imply that the system converges to the largest invariant
subset of the setS =

{

q|V̇ (q) = 0
}

which corresponds to

u = −2 (R ⊗ I2) q = 0, i.e., all agents eventually stop at
steady state.

We next review the results of [5] involving stabilization
of distance based formations with the control law (4) andγ
given as in (6).

Denote byq̄ the M -dimensional stack vector of relative
position differences of pairs of agents that form an edge
in the formation graph, whereM is the number of edges,
i.e, M = |E| and q̄ =

[

q̄T
1 , . . . , q̄T

M

]T
, where for an edge

e = (i, j) ∈ E we haveq̄e = qi − qj .
With simple calculations, we can derive thaṫq =

−2 (R ⊗ I2) q is equivalent to

˙̄q = −
(

BT BW ⊗ I2

)

q̄ (8)

where the diagonal matrixW is given by

W = 2 · diag {ρe, e ∈ E} ∈ R
M×M

Using the previous equation, the convergence properties of
the closed-loop system were established in the following
theorem in [5]. We review here its proof since it will be
useful in the subsequent analysis:

Theorem 4: [5] Assume that the system (3) evolves under
the control law (4) withγ as in (6), and that the formation
graph is a tree. Then the agents are driven to the desired
formation, i.e.,limt→∞ q(t) = q∗ ∈ Φ.
Proof (sketch): Since at steady state,̇q = u =
−2 (R ⊗ I2) q = 0, we also have˙̄qe = 0 for all e ∈ E
and thus ˙̄q = 0. Then (8) yields

(

BT BW ⊗ I2

)

q̄ = 0. By
Lemma 1,BT B is positive definite, and thus(W ⊗ I2) q̄ =
0. SinceW is diagonal, the last equation is equivalent to
ρeq̄e = 0 for all e ∈ E. Sinceρe is scalar this impliesρe = 0
or q̄e = 0. However, for alle ∈ E we haveq̄e(t) 6= 0 for all
t ≥ 0, by virtue of Lemma 3. We conclude thatρe = 0
for all e ∈ E at steady state and henceβij = d2

ij , i.e,
||qi − qj || = dij for all (i, j) ∈ E, by virtue of (7).♦

We next provide the result of [5] that states that the
tree structure is a necessary and sufficient condition for
global stabilization of distance based formations under the
negative gradient control law of the form (4). For any
choice of functionγ ∈ Γ, the closed-system dynamics
are given byq̇ = u = −2 (R ⊗ I2) q,, or equivalently by
˙̄q = −

(

BT BW ⊗ I2

)

q̄ in the edge space. The analysis
leading to Theorem 4 guarantees that

(

BT BW ⊗ I2

)

q̄ = 0
at steady state. By virtue of Lemma 1, the matrixBT B
is non-singular only when the formation graph contains no
cycles. The following was derived in [5]:

Theorem 5: [5] Assume that the system (3) evolves under
the control law (4) and thatΦ is non-empty. Consider con-
ditions (i) u(q) = 0 only for q ∈ Φ, and (ii) limt→∞ q(t) =
q∗ ∈ Φ. Then there exists a formation potentialγ ∈ Γ such
that (i),(ii) hold if and only if the formation graph is a tree.
Proof (sketch): The “if” part is shown in Theorem 4, with the
choice of formation potential field (6). For the “only if part”,
assume that the closed-loop system has reached a steady state
at whichu = 0. We will show that (i) cannot hold ifG is not
a tree. IfG is not a tree, thenBT B is singular and then the
null space ofB, and thusBT B, is nonempty. In fact, in this
case, using properties of Kronecker products [14], [3], we
can show(BW ⊗ I2) q̄ = 0. Using the notation̄x,ȳ for the
stack vectors of the elements ofq̄ in thex andy coordinates,
the last equation impliesBWx̄ = BWȳ = 0, i.e., Wx̄,Wȳ
belong to the null space ofB. SinceG contains cycles, the
null space ofB is non-empty. Thus we cannot reach the
conclusion of the proof of Theorem 4 that(W ⊗I2)q̄ = 0. In
fact, equationsBWx̄ = BWȳ = 0 have an infinite number
of solutions, sinceBT B is now singular. Thus condition (i)
cannot hold ifG is not a tree. We conclude that (i) and (ii)
hold only if G is a tree.♦

A. Cyclic Graphs

In this section we further examine the equilibria of
distance-based formations with negative gradient control
laws for the case of graphs that contain cycles. Consider the
partition (2). Then the edge vectorq̄ can also be partitioned



as
q̄ = [ q̄T

T q̄T
C ]T (9)

whereq̄T corresponds to the edges of the spanning tree and
q̄C to the remaining ones. Similarly, the matrixW = 2 ·
diag {ρe, e ∈ E} can be decomposed as

W =

[

WT 0
0 WC

]

Using (2), we can also compute

BT B =

[

BT
T

BT
C

]

[

BT BC

]

=

[

BT
T BT BT

T BC

BT
CBT BT

CBC

]

so that ˙̄q = −
(

BT BW ⊗ I2

)

q̄ can be written as
[

˙̄qT

˙̄qC

]

= (

[

BT
T BT BT

T BC

BT
CBT BT

CBC

] [

WT 0
0 WC

]

⊗I2)

[

q̄T

q̄C

]

or, equivalently

˙̄qT = −(BT
T BT WT ⊗ I2)q̄T − (BT

T BCWC ⊗ I2)q̄C (10)

˙̄qC = −(BT
CBT WT ⊗ I2)q̄T − (BC

T BCWC ⊗ I2)q̄C (11)

Since ˙̄qT = ˙̄qC = 0 at steady state, we get

−(BT
T BT WT ⊗ I2)q̄T − (BT

T BCWC ⊗ I2)q̄C = 0

and sinceBT
T BT is positive definite, we have

(WT ⊗ I2)q̄T = −((BT
T BT )−1BT

T BCWC ⊗ I2)q̄C (12)

at steady state.
We can further characterize the infinite solutions of equa-

tion ˙̄q = −
(

BT BW ⊗ I2

)

q̄ in the case of cyclic graphs
using (12). For al × l matrix M , and k ≤ n, let (M)k

denote thek × n matrix that includes the lastk rows of M .
From the proof of Theorem 4 we know that for each edge
e we have eitherρe = 0 at steady state, in the case that this
edge has converged to the desired relative distance for the
agents that constitute it, orρe 6= 0 in the case it has not.
Partition now the set of edges corresponding toq̄T as

q̄T =
[

q̄T
Ts

q̄T
Tu

]T

where q̄Ts
corresponds to the edges that have successfully

converged to the desired distance andq̄Tu
to the ones that

have not. Letdim(q̄Ts
) = Ts anddim(q̄Tu

) = Tu. Then the
the matrixWT will have the block diagonal form

WT =

[

0 0
0 WTu

]

since the edges that have converged to the desired values
render the corresponding elements ofW equal to zero. Mor-
ever,WTu

is invertible, since all the elements of this diagonal
matrix are nonzero (since they correspond to edges that have
not reached the desired distance). Then the following relation
holds for q̄Tu

:

(WTu
⊗ I2)q̄Tu

= −(((BT
T BT )−1BT

T BCWC)Tu
⊗ I2)q̄C

so that finally

q̄Tu
= −(W−1

Tu
((BT

T BT )−1BT
T BCWC)Tu

⊗ I2)q̄C (13)

The last equation provides the relation of all edges that have
failed to converge to their desired values at steady state in
terms of the cycle edges of the graph.

V. NONHOLONOMIC AGENTS

In this section we modify the control design of the previ-
ous sections in order to tackle with nonholonomic kinematic
unicycle agents. The control law used in [6] for agreement
of multiple nonholonomic agents is redefined in this case to
treat distance based formation stabilzation. Agent motionis
now described by the following nonholonomic kinematics:

ẋi = ui cos θi

ẏi = ui sin θi

θ̇i = ωi

, i ∈ N = {1, . . . , N} , (14)

whereui, ωi denote the translational and rotational velocity
of agenti, respectively.

Define now

γi(q) =
∑

j∈Ni

γ(βij(q))

for each agenti ∈ N . We can now use the control design
of [6] for the problem in hand. Specifically, the following
discontinuous time-invariant feedback control law is usedfor
each agenti:

ui = −sgn {γxi cos θi + γyi sin θi} ·
(

γ2
xi + γ2

yi

)1/2
, (15)

ωi = − (θi − θnhi
) , (16)

where

γxi =
∂γi

∂xi
= 2

∑

j∈Ni

ρij (xi − xj)

γyi =
∂γi

∂yi
= 2

∑

j∈Ni

ρij (yi − yj)

and θnhi
= arctan 2 (γyi, γxi). Then the following result

holds:
Theorem 6: Consider the system of nonholonomic agents

(14) with the control law (15),(16). Then the agents are
driven to the set

Snh = {(q, θ) :
(

BT BW ⊗ I2

)

q̄ = 0, θ1 = . . . = θN = 0}
Proof : Using the same steps as in the proof of Theorem 4
in [6], we deduce that the agents converge to a configuration
where γxi = γyi = 0 for all i with zero orientations.
The result now follows from the fact thatγxi = γyi = 0
for all i implies 2(R ⊗ I2)q = 0 which furter implies
(

BT BW ⊗ I2

)

q̄ = 0. ♦
Hence the control design (15),(16) forces the nonholo-

nomic multi-agent system to behave in exactly the same way
as in the single integrator case. Thus, the results regarding
the equilibria of the distance based formation controller
discussed in the previous sections hold in the nonholonomic
case as well.
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Fig. 1. Example of three single integrator agents from [5]. The resulting
configuration belongs to the cycle space of the graph and doesnot coincide
with a point inΦ.

VI. SIMULATIONS

The results of the paper are supported in this section by
computer simulations. The purpose of these examples is to
show the effect of the nonholonomic kinematics and the
communication topology to the resulting equilibria.

In the first simulation we provide a comparison of the
single integrator and nonholonomic unicycle cases. We first
consider the example taken from [5] where the control
law (4) failed to stabilize a system of three single inte-
grator agents to a desired triangular formation. The graph
considered is a complete cycle graph,i.e.,N1 = {2, 3},
N2 = {1, 3}, N3 = {2, 3}, and d2

12 = d2
13 = d2

23 =
√

2.
The agents start from initial positionsq1(0) = [0, 0]T ,
q2(0) = [−1, 0]T and q3(0) = [1, 0]T . The evolution in the
single integrator case is depicted in Figure 1, taken from
[5], where the crosses represent the initial positions of the
agents and their final locations are noted by a black circle.
The system converges to an undesired steady state given by
q1 = [0, 0]T , q2 = [−0.6866, 0]T andq3 = [0.6866, 0]T . The
edge distances satisfy(BW ⊗ I2)q̄ = 0 and(W ⊗ I2)q̄ 6= 0,
and thus the desired formation is not reached. The exact same
initial positions are used in Figure 2, where we now consider
nonholonomic agents driven by (15),(16). As witnessed in
the figure, the agents in the nonholonomic case converge to
the desired triangular formation. Thus the undesirable sets of
initial conditions that are attractors to the cycle space ofthe
graphG are different than the single integrator case. This is
due to the nonholonomic constraints in the agents’ motion
in the second case.

The next example involves four single integrator agents. In
the first example we have a a complete graph and a rectan-
gular formation, to which the agents do indeed converge, as
depicted in Figure 3. By deleting the edges between agents
1,3 and 2,4 the resulting equilibria are now shown in Figure
4. In fact, in this example, agents 2 and 4 converge to the
same point, since there is no edge and hence no repulsion
between them.
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Fig. 2. The three agents now have nonholonomic kinematics and are
controlled by (15),(16). The system converges to the desired final formation
from the same initial conditions as in the single integrator case.
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Fig. 3. Four agents with control law (4),(6) and a complete formation
graph reach a rectangular formation.

VII. C ONCLUSIONS

In this paper we provided new results for distance based
formation control. In particular, we examined the relation
between the cycle space of the formation graph and the re-
sulting equilibria of cyclic formations. Moreover, the results
are extended to the case of distance based formation con-
trol for nonholonomic agents. Finally, computer simulations
supported the derived results.

Future work will focus on further exploring the role of
the cycle space and the incidence matrix in other cooperative
control problems.
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