2019-06-17 13:13:49 +07:00
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
% Lachaise Assignment
|
|
|
|
% LaTeX Template
|
|
|
|
% Version 1.0 (26/6/2018)
|
|
|
|
%
|
|
|
|
% This template originates from:
|
|
|
|
% http://www.LaTeXTemplates.com
|
|
|
|
%
|
|
|
|
% Authors:
|
|
|
|
% Marion Lachaise & François Févotte
|
|
|
|
% Vel (vel@LaTeXTemplates.com)
|
|
|
|
%
|
|
|
|
% License:
|
|
|
|
% CC BY-NC-SA 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0/)
|
|
|
|
%
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
|
|
%----------------------------------------------------------------------------------------
|
|
|
|
% PACKAGES AND OTHER DOCUMENT CONFIGURATIONS
|
|
|
|
%----------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
\documentclass{article}
|
|
|
|
|
|
|
|
\input{structure.tex} % Include the file specifying the document structure and custom commands
|
|
|
|
%% \usepackage[backend=biber]{biblatex}}
|
|
|
|
%% \addbibresource{ref.bib}
|
|
|
|
|
|
|
|
%----------------------------------------------------------------------------------------
|
|
|
|
% ASSIGNMENT INFORMATION
|
|
|
|
%----------------------------------------------------------------------------------------
|
|
|
|
|
2019-06-19 15:09:19 +07:00
|
|
|
\title{Kendali Proposional-Integral Pada Pelacakan Formasi Berdasarkan Jarak} % Title of the assignment
|
2019-06-17 13:13:49 +07:00
|
|
|
|
|
|
|
\author{Anggoro Dwi Nur Rohman\\ \texttt{anggoro\_dwi@student.ub.ac.id}} % Author name and email address
|
|
|
|
|
|
|
|
\date{Universitas Brawijaya--- \today} % University, school and/or department name(s) and a date
|
|
|
|
|
|
|
|
%----------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
\maketitle % Print the title
|
|
|
|
\section*{Pendahuluan}
|
2019-06-19 15:09:19 +07:00
|
|
|
Rangkuman ini ditujukan untuk memahami dan review jurnal. Judul dalam bahasa inggris
|
|
|
|
\textit{A Proportional-Integral Controller for Distance-Based Formation Tacking} yang
|
|
|
|
diteliti oleh Oshri Rozenheck dari Israel Institute of Technology, Haifa, Israel.
|
|
|
|
Peneliti menerangkan pada jurnal ini tentang permasalahan kendali formasi pada
|
|
|
|
multi-agent apabila pada salah satu agent nya diberikan kecepatan tambahan sebagai
|
|
|
|
refrensi.
|
|
|
|
|
|
|
|
%% \begin{table}
|
|
|
|
\section{Notasi-Notasi}
|
|
|
|
%% \caption{Notasi-notasi}
|
|
|
|
\begin{tabular}{| l | l |}
|
|
|
|
\hline
|
|
|
|
Notasi & Keterangan \\ \hline
|
|
|
|
$n \triangleq |V|$ & ... \\ \hline
|
|
|
|
|
|
|
|
$m \triangleq |\varepsilon| $ & .. \\ \hline
|
|
|
|
|
|
|
|
$A_1, \dots, A_n \in \mathbb{R}^{p\times q}$ & ... \\ \hline
|
|
|
|
|
|
|
|
$x = \begin{bmatrix} x_1^T \\ \dots\\ x_n^T \end{bmatrix} \in \mathbb{R}^{2n}$ &
|
|
|
|
Konfigurasi titik \\
|
|
|
|
$x_i \in \mathbb{R}^n$ & \\
|
|
|
|
$ x_i \neq x_j ; \forall i \neq j$ & \\ \hline
|
|
|
|
|
|
|
|
$e_k \triangleq x_j - x_i$ & Relative position vector \\ \hline
|
|
|
|
|
|
|
|
$e = \begin{bmatrix} e_1^T \\ \vdots \\ e_m^T \end{bmatrix} \in \mathbb{R}^{2m}$ & Edge Vector \\
|
|
|
|
|
|
|
|
$E \in R^{n\times m}$ & Incidence matrix dimana isinya adalah $\{0, \pm 1\}$ \\
|
|
|
|
& barisnya menandakan vertices dan kolom nya menandakan edge \\ \hline
|
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
%% \end{table}
|
|
|
|
|
|
|
|
\section{ Edge Function}
|
|
|
|
Diketahui framework $G(x)$ dengan vector edge ${e}_{k=1}^m$,
|
|
|
|
$F : \mathbb{R}^{2n} \times G \rightarrow \mathbb{R}^m$, maka dapat didefinisi
|
|
|
|
\begin{equation}
|
|
|
|
F(x,G) \triangleq = \begin{bmatrix}|e_1||^2 \\ \vdots \\ ||e_m||^2 \end{bmatrix}
|
|
|
|
\end{equation}
|
|
|
|
Peneliti mendefinisi \textit{rigidity matrix R(x)} sebagai fungsi jacobian dari
|
|
|
|
Edge function,
|
|
|
|
\begin{equation*}
|
|
|
|
R(x) = \frac{\partial F(x,G)}{\partial x} \in \mathbb{R}^{m \times 2n}
|
|
|
|
\end{equation*}
|
|
|
|
dan menyingkat perhitungannya dan menghasilkan persamaan
|
|
|
|
\begin{equation}
|
|
|
|
R(x) = diag(e_i^T)(E^T \otimes I_2)
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
\section{Kendali}
|
|
|
|
|
|
|
|
Error jarak dinotasikan dengan $\delta \in \mathbb{R}^m$ dimana
|
|
|
|
\begin{equation}
|
|
|
|
\delta_k = || e_k ||^2 - d_k^2, k \in \{1, \dots, m\}
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
Peneliti menggunakan fungsi potensial
|
|
|
|
\begin{equation}
|
|
|
|
\Phi(e) = \frac{1}{2} \sum_{k-1}^{m} \Big( || e_k ||^2 - d_k^2 \Big)^2 =
|
|
|
|
\frac{1}{2} \sum_{k=1}^{m} \delta_k^2
|
|
|
|
\end{equation}
|
|
|
|
digunakan untuk kendali pada setiap robot dengan cara negative gradient
|
|
|
|
dari fungsi potensial.
|
|
|
|
\begin{equation}
|
|
|
|
u_i(t) = - \Big(\frac{\partial \Phi(e)}{\partial x_i} \Big) =
|
|
|
|
- \sum_{j ~ o} \Big( || e_k ||^2 - d_k^2 \Big) e_k
|
|
|
|
\end{equation}
|
|
|
|
Apabila ditulis ulang dalam bentuk state-space
|
|
|
|
\begin{equation}
|
|
|
|
\dot{x}(t) = - R(x)^T R(x) x(t) + R(x)^Td
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
\begin{figure}
|
|
|
|
\centering
|
|
|
|
\includegraphics[scale=.7]{./IMG/fig2.png}
|
|
|
|
\caption{Skema General}
|
|
|
|
\label{f1}
|
|
|
|
\end{figure}
|
|
|
|
|
|
|
|
Menggunakan skema seperti pada gambar.\ref{f1} maka dapat diperoleh
|
|
|
|
\begin{eqnarray}
|
|
|
|
\dot{x} &=& u(t) + B.v_{ref} \\
|
|
|
|
u(t) &=& -R(x)^T.C.\Big(R(x).x(t) - d \Big) \label{controller}
|
|
|
|
\end{eqnarray}
|
|
|
|
dan cikal bakal $C$ sebagai controller.
|
|
|
|
|
|
|
|
dengan menerapkan Proportional-integrator pada persamaan \eqref{controller}
|
|
|
|
maka diperoleh
|
|
|
|
\begin{equation}
|
|
|
|
u(t) = -R(x)^T k_p ( R(x).x(T) - d ) -
|
|
|
|
R(x)^T.K_i \int_0^T (R(x).x(\tau) - d) d \tau
|
|
|
|
\end{equation}
|
|
|
|
dimana $kp_p$ dan $k_i$ adalah konstanta.
|
|
|
|
|
|
|
|
Pada bagian integrator menghasilkan state baru
|
|
|
|
\begin{equation}
|
|
|
|
\dot{\xi} = k_i(R(x).x(t) -d)
|
|
|
|
\end{equation}
|
|
|
|
lalu kombinasi persamaan tersebut diperoleh state- space close loop
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
\begin{bmatrix} \dot{x}(t) \\ \dot{\xi(t)} \end{bmatrix} =
|
|
|
|
\begin{bmatrix} -k_p.R(x)^T.R(x) & -R(x)^T \\ k_i.R(x) & 0 \end{bmatrix}
|
|
|
|
\begin{bmatrix} x(t) \\ \xi(t) \end{bmatrix} +
|
|
|
|
\begin{bmatrix} k_p.R(x)^T \\ -k_i.I \end{bmatrix}.d +
|
|
|
|
\begin{bmatrix} B \\ 0 \end{bmatrix}.v_{ref}
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
\subsection{Implementasi}
|
|
|
|
|
|
|
|
Pada seksi implementasi ini akan dibahas mengenai code yang digunakan
|
|
|
|
untuk mensimulasi persamaan yang diciptakan oleh peneliti.
|
2019-06-17 13:13:49 +07:00
|
|
|
|
|
|
|
\end{document}
|