FormationControlSimulation/SOURCE/networks-toolbox/pearsonW.m

53 lines
1.5 KiB
Matlab
Raw Normal View History

2019-06-17 14:31:50 +07:00
% Calculating the Pearson coefficient for a degree sequence
% INPUTs: M - matrix, square
% OUTPUTs: r - Pearson coefficient
% Courtesy: Dr. Daniel Whitney, circa 2006
function prs = pearsonW(M)
%calculates pearson degree correlation of M
[rows,colms]=size(M);
won=ones(rows,1);
k=won'*M;
ksum=won'*k';
ksqsum=k*k';
xbar=ksqsum/ksum;
num=(won'*M-won'*xbar)*M*(M*won-xbar*won);
M*(M*won-xbar*won);
kkk=(k'-xbar*won).*(k'.^.5);
denom=kkk'*kkk;
prs=num/denom;
% ALTERNATIVE .... BETTER-DOCUMENTED .... see pearson.m ....
% Calculating the Pearson coefficient for a degree sequence
% INPUTs: M - matrix, square
% OUTPUTs: r - Pearson coefficient
% source: "Assortative Mixing in Network", M.E.J. Newman, PhysRevLet 2002
% Gergana Bounova, March 15, 2006
% function r = pearson(M)
%
% [degs,~,~] = degrees(M); % get the total degree sequence
% m = numedges(M); % number of edges in M
% inc = adj2inc(M); % get incidence matrix for convience
%
% % j,k - remaining degrees of adjacent nodes for a given edge
% % sumjk - sum of all products jk
% % sumjplusk - sum of all sums j+k
% % sumj2plusk2 - sum of all sums of squares j^2+k^2
%
% % compute sumjk, sumjplusk, sumj2plusk2
% sumjk = 0; sumjplusk = 0; sumj2plusk2 = 0;
% for i=1:m
% [v] = find(inc(:,i)==1);
% j = degs(v(1))-1; k = degs(v(2))-1; % remaining degrees of 2 end-nodes
% sumjk = sumjk + j*k;
% sumjplusk = sumjplusk + 0.5*(j+k);
% sumj2plusk2 = sumj2plusk2 + 0.5*(j^2+k^2);
% end
%
% % Pearson coefficient formula
% r = (sumjk - sumjplusk^2/m)/(sumj2plusk2-sumjplusk^2/m);