554 lines
18 KiB
Plaintext
554 lines
18 KiB
Plaintext
% $ biblatex auxiliary file $
|
|
% $ biblatex bbl format version 2.9 $
|
|
% Do not modify the above lines!
|
|
%
|
|
% This is an auxiliary file used by the 'biblatex' package.
|
|
% This file may safely be deleted. It will be recreated as
|
|
% required.
|
|
%
|
|
\begingroup
|
|
\makeatletter
|
|
\@ifundefined{ver@biblatex.sty}
|
|
{\@latex@error
|
|
{Missing 'biblatex' package}
|
|
{The bibliography requires the 'biblatex' package.}
|
|
\aftergroup\endinput}
|
|
{}
|
|
\endgroup
|
|
|
|
\datalist[entry]{nyt/global//global/global}
|
|
\entry{Cao2007}{inproceedings}{}
|
|
\name{author}{5}{}{%
|
|
{{hash=CM}{%
|
|
family={{Cao}},
|
|
familyi={C\bibinitperiod},
|
|
given={M.},
|
|
giveni={M\bibinitperiod},
|
|
}}%
|
|
{{hash=MAS}{%
|
|
family={{Morse}},
|
|
familyi={M\bibinitperiod},
|
|
given={A.\bibnamedelima S.},
|
|
giveni={A\bibinitperiod\bibinitdelim S\bibinitperiod},
|
|
}}%
|
|
{{hash=YC}{%
|
|
family={{Yu}},
|
|
familyi={Y\bibinitperiod},
|
|
given={C.},
|
|
giveni={C\bibinitperiod},
|
|
}}%
|
|
{{hash=ABDO}{%
|
|
family={{Anderson}},
|
|
familyi={A\bibinitperiod},
|
|
given={B.\bibnamedelima D.\bibnamedelima O.},
|
|
giveni={B\bibinitperiod\bibinitdelim D\bibinitperiod\bibinitdelim
|
|
O\bibinitperiod},
|
|
}}%
|
|
{{hash=DS}{%
|
|
family={{Dasguvta}},
|
|
familyi={D\bibinitperiod},
|
|
given={S.},
|
|
giveni={S\bibinitperiod},
|
|
}}%
|
|
}
|
|
\keyw{distributed control;mobile robots;multi-robot systems;spatial
|
|
variables control;triangular formation;mobile autonomous agents;collinear
|
|
formations;distributed control law;Autonomous agents;USA Councils;Distributed
|
|
control;H infinity control;Differential equations;Information
|
|
technology;Art;Australia Council}
|
|
\strng{namehash}{CM+1}
|
|
\strng{fullhash}{CMMASYCABDODS1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{labelyear}{2007}
|
|
\field{labeldatesource}{year}
|
|
\field{sortinit}{C}
|
|
\field{sortinithash}{C}
|
|
\field{abstract}{%
|
|
This paper proposes a distributed control law for maintaining a triangular
|
|
formation in the plane consisting of three mobile autonomous agents. It is
|
|
shown that the control law can cause any initially non-collinear,
|
|
positively-oriented {resp. negatively-oriented} triangular formation to
|
|
converge exponentially fast to a desired positively-oriented {resp.
|
|
negatively- oriented} triangular formation. It is also shown that there is a
|
|
thin set of initially collinear formations which remain collinear and may
|
|
drift off to infinity as t rarr infin. These findings complement and extend
|
|
earlier findings cited below.%
|
|
}
|
|
\field{booktitle}{2007 46th IEEE Conference on Decision and Control}
|
|
\verb{doi}
|
|
\verb 10.1109/CDC.2007.4434757
|
|
\endverb
|
|
\field{issn}{0191-2216}
|
|
\field{pages}{3603\bibrangedash 3608}
|
|
\field{title}{Controlling a triangular formation of mobile autonomous
|
|
agents}
|
|
\field{year}{2007}
|
|
\warn{\item Invalid format of field 'month'}
|
|
\endentry
|
|
|
|
\entry{CORREIA20127}{article}{}
|
|
\name{author}{3}{}{%
|
|
{{hash=CMD}{%
|
|
family={Correia},
|
|
familyi={C\bibinitperiod},
|
|
given={Mariane\bibnamedelima Dourado},
|
|
giveni={M\bibinitperiod\bibinitdelim D\bibinitperiod},
|
|
}}%
|
|
{{hash=GA}{%
|
|
family={Gustavo},
|
|
familyi={G\bibinitperiod},
|
|
given={André},
|
|
giveni={A\bibinitperiod},
|
|
}}%
|
|
{{hash=CS}{%
|
|
family={Conceição},
|
|
familyi={C\bibinitperiod},
|
|
given={Scolari},
|
|
giveni={S\bibinitperiod},
|
|
}}%
|
|
}
|
|
\keyw{Models, Friction, Parameter estimation, Autonomous mobile robots}
|
|
\strng{namehash}{CMDGACS1}
|
|
\strng{fullhash}{CMDGACS1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{labelyear}{2012}
|
|
\field{labeldatesource}{year}
|
|
\field{sortinit}{C}
|
|
\field{sortinithash}{C}
|
|
\field{abstract}{%
|
|
This paper presents a model of a three-wheeled omnidirectional robot
|
|
including a static friction model. Besides the modeling is presented a
|
|
practical approach in order to estimate the coefficients of coulomb and
|
|
viscous friction, which used sensory information about force and velocity of
|
|
the robot's center of mass. The proposed model model has the voltages of the
|
|
motors as inputs and the linear and angular velocities of the robot as
|
|
outputs. Actual results and simulation with the estimated model are compared
|
|
to demonstrate the performance of the proposed modeling.%
|
|
}
|
|
\verb{doi}
|
|
\verb https://doi.org/10.3182/20120905-3-HR-2030.00002
|
|
\endverb
|
|
\field{issn}{1474-6670}
|
|
\field{note}{10th IFAC Symposium on Robot Control}
|
|
\field{number}{22}
|
|
\field{pages}{7 \bibrangedash 12}
|
|
\field{title}{Modeling of a Three Wheeled Omnidirectional Robot Including
|
|
Friction Models}
|
|
\verb{url}
|
|
\verb http://www.sciencedirect.com/science/article/pii/S1474667016335807
|
|
\endverb
|
|
\field{volume}{45}
|
|
\field{journaltitle}{IFAC Proceedings Volumes}
|
|
\field{year}{2012}
|
|
\endentry
|
|
|
|
\entry{Richard2010}{book}{}
|
|
\name{author}{2}{}{%
|
|
{{hash=DR}{%
|
|
family={Dorf},
|
|
familyi={D\bibinitperiod},
|
|
given={Richard},
|
|
giveni={R\bibinitperiod},
|
|
}}%
|
|
{{hash=BR}{%
|
|
family={Bishop},
|
|
familyi={B\bibinitperiod},
|
|
given={Robert},
|
|
giveni={R\bibinitperiod},
|
|
}}%
|
|
}
|
|
\strng{namehash}{DRBR1}
|
|
\strng{fullhash}{DRBR1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{labelyear}{2010}
|
|
\field{labeldatesource}{year}
|
|
\field{sortinit}{D}
|
|
\field{sortinithash}{D}
|
|
\field{isbn}{ISBN-10: 0136024580; ISBN-13: 978-0136024583}
|
|
\field{title}{Modern Control Systems, 12th Edition}
|
|
\field{month}{07}
|
|
\field{year}{2010}
|
|
\endentry
|
|
|
|
\entry{Fabien2009}{inbook}{}
|
|
\name{author}{1}{}{%
|
|
{{hash=FB}{%
|
|
family={Fabien},
|
|
familyi={F\bibinitperiod},
|
|
given={Brian},
|
|
giveni={B\bibinitperiod},
|
|
}}%
|
|
}
|
|
\list{publisher}{1}{%
|
|
{Springer US}%
|
|
}
|
|
\strng{namehash}{FB1}
|
|
\strng{fullhash}{FB1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{labelyear}{2009}
|
|
\field{labeldatesource}{year}
|
|
\field{sortinit}{F}
|
|
\field{sortinithash}{F}
|
|
\field{booktitle}{Analytical System Dynamics: Modeling and Simulation}
|
|
\verb{doi}
|
|
\verb 10.1007/978-0-387-85605-6_5
|
|
\endverb
|
|
\field{isbn}{978-0-387-85605-6}
|
|
\field{pages}{1\bibrangedash 59}
|
|
\field{title}{Numerical Solution of ODEs and DAEs}
|
|
\verb{url}
|
|
\verb https://doi.org/10.1007/978-0-387-85605-6_5
|
|
\endverb
|
|
\list{location}{1}{%
|
|
{Boston, MA}%
|
|
}
|
|
\field{year}{2009}
|
|
\endentry
|
|
|
|
\entry{Guanghua2013}{inproceedings}{}
|
|
\name{author}{4}{}{%
|
|
{{hash=GW}{%
|
|
family={Guanghua},
|
|
familyi={G\bibinitperiod},
|
|
given={Wang},
|
|
giveni={W\bibinitperiod},
|
|
}}%
|
|
{{hash=DL}{%
|
|
family={Deyi},
|
|
familyi={D\bibinitperiod},
|
|
given={Li},
|
|
giveni={L\bibinitperiod},
|
|
}}%
|
|
{{hash=WG}{%
|
|
family={Wenyan},
|
|
familyi={W\bibinitperiod},
|
|
given={Gan},
|
|
giveni={G\bibinitperiod},
|
|
}}%
|
|
{{hash=PJ}{%
|
|
family={Peng},
|
|
familyi={P\bibinitperiod},
|
|
given={Jia},
|
|
giveni={J\bibinitperiod},
|
|
}}%
|
|
}
|
|
\strng{namehash}{GW+1}
|
|
\strng{fullhash}{GWDLWGPJ1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{labelyear}{2013}
|
|
\field{labeldatesource}{year}
|
|
\field{sortinit}{G}
|
|
\field{sortinithash}{G}
|
|
\verb{doi}
|
|
\verb 10.1109/ISDEA.2012.316
|
|
\endverb
|
|
\field{isbn}{978-1-4673-4893-5}
|
|
\field{pages}{1335\bibrangedash 1339}
|
|
\field{title}{Study on Formation Control of Multi-Robot Systems}
|
|
\field{month}{01}
|
|
\field{year}{2013}
|
|
\endentry
|
|
|
|
\entry{Hacene2019}{article}{}
|
|
\name{author}{2}{}{%
|
|
{{hash=HN}{%
|
|
family={Hacene},
|
|
familyi={H\bibinitperiod},
|
|
given={Nacer},
|
|
giveni={N\bibinitperiod},
|
|
}}%
|
|
{{hash=MB}{%
|
|
family={Mendil},
|
|
familyi={M\bibinitperiod},
|
|
given={Boubekeur},
|
|
giveni={B\bibinitperiod},
|
|
}}%
|
|
}
|
|
\strng{namehash}{HNMB1}
|
|
\strng{fullhash}{HNMB1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{labelyear}{2019}
|
|
\field{labeldatesource}{year}
|
|
\field{sortinit}{H}
|
|
\field{sortinithash}{H}
|
|
\field{abstract}{%
|
|
In this paper, a fuzzy behavior-based approach for a three wheeled
|
|
omnidirectional mobile robot (TWOMR) navigation has been proposed. The robot
|
|
has to track either static or dynamic target while avoiding either static or
|
|
dynamic obstacles along its path. A simple controller design is adopted, and
|
|
to do so, two fuzzy behaviors ``Track the Target'' and ``Avoid Obstacles and
|
|
Wall Following'' are considered based on reduced rule bases (six and five
|
|
rules respectively). This strategy employs a system of five ultrasonic
|
|
sensors which provide the necessary information about obstacles in the
|
|
environment. Simulation platform was designed to demonstrate the
|
|
effectiveness of the proposed approach.%
|
|
}
|
|
\verb{doi}
|
|
\verb 10.1007/s11633-018-1135-x
|
|
\endverb
|
|
\field{issn}{1751-8520}
|
|
\field{number}{2}
|
|
\field{pages}{163\bibrangedash 185}
|
|
\field{title}{Fuzzy Behavior-based Control of Three Wheeled Omnidirectional
|
|
Mobile Robot}
|
|
\verb{url}
|
|
\verb https://doi.org/10.1007/s11633-018-1135-x
|
|
\endverb
|
|
\field{volume}{16}
|
|
\field{journaltitle}{International Journal of Automation and Computing}
|
|
\field{month}{04}
|
|
\field{year}{2019}
|
|
\endentry
|
|
|
|
\entry{Irwanto2018}{misc}{}
|
|
\name{author}{1}{}{%
|
|
{{hash=IHY}{%
|
|
family={Irwanto},
|
|
familyi={I\bibinitperiod},
|
|
given={Herma\bibnamedelima Yudhi},
|
|
giveni={H\bibinitperiod\bibinitdelim Y\bibinitperiod},
|
|
}}%
|
|
}
|
|
\strng{namehash}{IHY1}
|
|
\strng{fullhash}{IHY1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{labelyear}{2018}
|
|
\field{labeldatesource}{year}
|
|
\field{sortinit}{I}
|
|
\field{sortinithash}{I}
|
|
\field{number}{1}
|
|
\field{title}{Development of Mobile Ground Control System and GPS Base Auto
|
|
Tracking Antenna}
|
|
\field{volume}{16}
|
|
\field{journaltitle}{Jurnal Teknologi Dirgantara}
|
|
\field{year}{2018}
|
|
\warn{\item Invalid format of field 'month'}
|
|
\endentry
|
|
|
|
\entry{Jim1999}{inbook}{}
|
|
\name{author}{1}{}{%
|
|
{{hash=LJA}{%
|
|
family={Ledin},
|
|
familyi={L\bibinitperiod},
|
|
given={Jim\bibnamedelima A.},
|
|
giveni={J\bibinitperiod\bibinitdelim A\bibinitperiod},
|
|
}}%
|
|
}
|
|
\strng{namehash}{LJA1}
|
|
\strng{fullhash}{LJA1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{labelyear}{1999}
|
|
\field{labeldatesource}{year}
|
|
\field{sortinit}{L}
|
|
\field{sortinithash}{L}
|
|
\field{booktitle}{Embedded Systems Programming}
|
|
\field{title}{Hardware-in-the-Loop Simulation}
|
|
\field{year}{1999}
|
|
\warn{\item Invalid format of field 'month'}
|
|
\endentry
|
|
|
|
\entry{OH2015424}{article}{}
|
|
\name{author}{3}{}{%
|
|
{{hash=OKK}{%
|
|
family={Oh},
|
|
familyi={O\bibinitperiod},
|
|
given={Kwang-Kyo},
|
|
giveni={K\bibinitperiod-K\bibinitperiod},
|
|
}}%
|
|
{{hash=PMC}{%
|
|
family={Park},
|
|
familyi={P\bibinitperiod},
|
|
given={Myoung-Chul},
|
|
giveni={M\bibinitperiod-C\bibinitperiod},
|
|
}}%
|
|
{{hash=AHS}{%
|
|
family={Ahn},
|
|
familyi={A\bibinitperiod},
|
|
given={Hyo-Sung},
|
|
giveni={H\bibinitperiod-S\bibinitperiod},
|
|
}}%
|
|
}
|
|
\keyw{Formation control, Position-based control, Displacement-based
|
|
control, Distance-based control}
|
|
\strng{namehash}{OKKPMCAHS1}
|
|
\strng{fullhash}{OKKPMCAHS1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{labelyear}{2015}
|
|
\field{labeldatesource}{year}
|
|
\field{sortinit}{O}
|
|
\field{sortinithash}{O}
|
|
\field{abstract}{%
|
|
We present a survey of formation control of multi-agent systems. Focusing
|
|
on the sensing capability and the interaction topology of agents, we
|
|
categorize the existing results into position-, displacement-, and
|
|
distance-based control. We then summarize problem formulations, discuss
|
|
distinctions, and review recent results of the formation control schemes.
|
|
Further we review some other results that do not fit into the
|
|
categorization.%
|
|
}
|
|
\verb{doi}
|
|
\verb https://doi.org/10.1016/j.automatica.2014.10.022
|
|
\endverb
|
|
\field{issn}{0005-1098}
|
|
\field{pages}{424 \bibrangedash 440}
|
|
\field{title}{A survey of multi-agent formation control}
|
|
\verb{url}
|
|
\verb http://www.sciencedirect.com/science/article/pii/S0005109814004038
|
|
\endverb
|
|
\field{volume}{53}
|
|
\field{journaltitle}{Automatica}
|
|
\field{year}{2015}
|
|
\endentry
|
|
|
|
\entry{Parker2003}{article}{}
|
|
\name{author}{1}{}{%
|
|
{{hash=PL}{%
|
|
family={Parker},
|
|
familyi={P\bibinitperiod},
|
|
given={Lynne},
|
|
giveni={L\bibinitperiod},
|
|
}}%
|
|
}
|
|
\strng{namehash}{PL1}
|
|
\strng{fullhash}{PL1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{labelyear}{2003}
|
|
\field{labeldatesource}{year}
|
|
\field{sortinit}{P}
|
|
\field{sortinithash}{P}
|
|
\verb{doi}
|
|
\verb 10.1007/BF02480877
|
|
\endverb
|
|
\field{pages}{1\bibrangedash 5}
|
|
\field{title}{Current research in multirobot systems}
|
|
\field{volume}{7}
|
|
\field{journaltitle}{Artificial Life and Robotics}
|
|
\field{month}{03}
|
|
\field{year}{2003}
|
|
\endentry
|
|
|
|
\entry{QUESADA2019275}{article}{}
|
|
\name{author}{4}{}{%
|
|
{{hash=QLF}{%
|
|
family={Quesada},
|
|
familyi={Q\bibinitperiod},
|
|
given={Luisa\bibnamedelima Fernanda},
|
|
giveni={L\bibinitperiod\bibinitdelim F\bibinitperiod},
|
|
}}%
|
|
{{hash=RJD}{%
|
|
family={Rojas},
|
|
familyi={R\bibinitperiod},
|
|
given={José\bibnamedelima David},
|
|
giveni={J\bibinitperiod\bibinitdelim D\bibinitperiod},
|
|
}}%
|
|
{{hash=AO}{%
|
|
family={Arrieta},
|
|
familyi={A\bibinitperiod},
|
|
given={Orlando},
|
|
giveni={O\bibinitperiod},
|
|
}}%
|
|
{{hash=VR}{%
|
|
family={Vilanova},
|
|
familyi={V\bibinitperiod},
|
|
given={Ramon},
|
|
giveni={R\bibinitperiod},
|
|
}}%
|
|
}
|
|
\keyw{Controlled system, insulin control, Hardware in the loop, PID
|
|
control, Optimal control}
|
|
\strng{namehash}{QLF+1}
|
|
\strng{fullhash}{QLFRJDAOVR1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{labelyear}{2019}
|
|
\field{labeldatesource}{year}
|
|
\field{sortinit}{Q}
|
|
\field{sortinithash}{Q}
|
|
\field{abstract}{%
|
|
Artificial pancreas control is an important research area in the biomedical
|
|
field. However, it is dangerous to test new control algorithms on humans in
|
|
order to improve the performance of the control system. This paper presents
|
|
the results of using an open-source low-cost hardware in the loop platform to
|
|
test different control strategies for artificial pancreas research. An
|
|
Arduino platform was selected as the main device to implement the real time
|
|
differential equations solver needed for the HIL simulation. The platform was
|
|
successfully tested with both a PID controller and an LQR controller. The
|
|
code and schematics of the platform are available upon request.%
|
|
}
|
|
\verb{doi}
|
|
\verb https://doi.org/10.1016/j.ifacol.2019.06.074
|
|
\endverb
|
|
\field{issn}{2405-8963}
|
|
\field{note}{12th IFAC Symposium on Dynamics and Control of Process
|
|
Systems, including Biosystems DYCOPS 2019}
|
|
\field{number}{1}
|
|
\field{pages}{275 \bibrangedash 280}
|
|
\field{title}{Open-source low-cost Hardware-in-the-loop simulation platform
|
|
for testing control strategies for artificial pancreas research}
|
|
\verb{url}
|
|
\verb http://www.sciencedirect.com/science/article/pii/S2405896319301594
|
|
\endverb
|
|
\field{volume}{52}
|
|
\field{journaltitle}{IFAC-PapersOnLine}
|
|
\field{year}{2019}
|
|
\endentry
|
|
|
|
\entry{Rozenheck2015}{inproceedings}{}
|
|
\name{author}{3}{}{%
|
|
{{hash=RO}{%
|
|
family={{Rozenheck}},
|
|
familyi={R\bibinitperiod},
|
|
given={O.},
|
|
giveni={O\bibinitperiod},
|
|
}}%
|
|
{{hash=ZS}{%
|
|
family={{Zhao}},
|
|
familyi={Z\bibinitperiod},
|
|
given={S.},
|
|
giveni={S\bibinitperiod},
|
|
}}%
|
|
{{hash=ZD}{%
|
|
family={{Zelazo}},
|
|
familyi={Z\bibinitperiod},
|
|
given={D.},
|
|
giveni={D\bibinitperiod},
|
|
}}%
|
|
}
|
|
\keyw{gradient methods;multi-agent systems;PI control;velocity
|
|
control;proportional-integral controller;distance-based formation
|
|
tracking;multiagent formation control problem;additional velocity reference
|
|
command;interagent distance constraints;gradient formation
|
|
controller;formation error dynamics;steady-state formation error;Stability
|
|
analysis;Steady-state;Symmetric matrices;Aerodynamics;Jacobian
|
|
matrices;Numerical stability;Asymptotic stability}
|
|
\strng{namehash}{ROZSZD1}
|
|
\strng{fullhash}{ROZSZD1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{labelyear}{2015}
|
|
\field{labeldatesource}{year}
|
|
\field{sortinit}{R}
|
|
\field{sortinithash}{R}
|
|
\field{booktitle}{2015 European Control Conference (ECC)}
|
|
\verb{doi}
|
|
\verb 10.1109/ECC.2015.7330781
|
|
\endverb
|
|
\field{pages}{1693\bibrangedash 1698}
|
|
\field{title}{A proportional-integral controller for distance-based
|
|
formation tracking}
|
|
\field{year}{2015}
|
|
\warn{\item Invalid format of field 'month'}
|
|
\endentry
|
|
\enddatalist
|
|
\endinput
|