442 lines
15 KiB
Plaintext
442 lines
15 KiB
Plaintext
% $ biblatex auxiliary file $
|
|
% $ biblatex bbl format version 3.1 $
|
|
% Do not modify the above lines!
|
|
%
|
|
% This is an auxiliary file used by the 'biblatex' package.
|
|
% This file may safely be deleted. It will be recreated as
|
|
% required.
|
|
%
|
|
\begingroup
|
|
\makeatletter
|
|
\@ifundefined{ver@biblatex.sty}
|
|
{\@latex@error
|
|
{Missing 'biblatex' package}
|
|
{The bibliography requires the 'biblatex' package.}
|
|
\aftergroup\endinput}
|
|
{}
|
|
\endgroup
|
|
|
|
\datalist[entry]{none/global//global/global}
|
|
\entry{Parker2003}{article}{}
|
|
\name{author}{1}{}{%
|
|
{{hash=PL}{%
|
|
family={Parker},
|
|
familyi={P\bibinitperiod},
|
|
given={Lynne},
|
|
giveni={L\bibinitperiod},
|
|
}}%
|
|
}
|
|
\strng{namehash}{PL1}
|
|
\strng{fullhash}{PL1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\verb{doi}
|
|
\verb 10.1007/BF02480877
|
|
\endverb
|
|
\field{pages}{1\bibrangedash 5}
|
|
\field{title}{Current research in multirobot systems}
|
|
\field{volume}{7}
|
|
\field{journaltitle}{Artificial Life and Robotics}
|
|
\field{month}{03}
|
|
\field{year}{2003}
|
|
\endentry
|
|
|
|
\entry{Guanghua2013}{inproceedings}{}
|
|
\name{author}{4}{}{%
|
|
{{hash=GW}{%
|
|
family={Guanghua},
|
|
familyi={G\bibinitperiod},
|
|
given={Wang},
|
|
giveni={W\bibinitperiod},
|
|
}}%
|
|
{{hash=DL}{%
|
|
family={Deyi},
|
|
familyi={D\bibinitperiod},
|
|
given={Li},
|
|
giveni={L\bibinitperiod},
|
|
}}%
|
|
{{hash=WG}{%
|
|
family={Wenyan},
|
|
familyi={W\bibinitperiod},
|
|
given={Gan},
|
|
giveni={G\bibinitperiod},
|
|
}}%
|
|
{{hash=PJ}{%
|
|
family={Peng},
|
|
familyi={P\bibinitperiod},
|
|
given={Jia},
|
|
giveni={J\bibinitperiod},
|
|
}}%
|
|
}
|
|
\strng{namehash}{GW+1}
|
|
\strng{fullhash}{GWDLWGPJ1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\verb{doi}
|
|
\verb 10.1109/ISDEA.2012.316
|
|
\endverb
|
|
\field{isbn}{978-1-4673-4893-5}
|
|
\field{pages}{1335\bibrangedash 1339}
|
|
\field{title}{Study on Formation Control of Multi-Robot Systems}
|
|
\field{month}{01}
|
|
\field{year}{2013}
|
|
\endentry
|
|
|
|
\entry{6889491}{inproceedings}{}
|
|
\name{author}{3}{}{%
|
|
{{hash=WX}{%
|
|
family={{Wang}},
|
|
familyi={W\bibinitperiod},
|
|
given={X.},
|
|
giveni={X\bibinitperiod},
|
|
}}%
|
|
{{hash=YZ}{%
|
|
family={{Yan}},
|
|
familyi={Y\bibinitperiod},
|
|
given={Z.},
|
|
giveni={Z\bibinitperiod},
|
|
}}%
|
|
{{hash=WJ}{%
|
|
family={{Wang}},
|
|
familyi={W\bibinitperiod},
|
|
given={J.},
|
|
giveni={J\bibinitperiod},
|
|
}}%
|
|
}
|
|
\keyw{dynamic programming;mobile robots;multi-robot
|
|
systems;neurocontrollers;optimal control;predictive control;quadratic
|
|
programming;recurrent neural nets;torque control;trajectory control;model
|
|
predictive control approach;multirobot formation control problem;simplified
|
|
dual neural network;leader-follower scheme;desired trajectory
|
|
tracking;dynamic quadratic optimization problem;one-layer recurrent neural
|
|
network;optimal control input;Vectors;Lead;Wheels;Neural networks;Robot
|
|
kinematics;Mathematical model}
|
|
\strng{namehash}{WXYZWJ1}
|
|
\strng{fullhash}{WXYZWJ1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{booktitle}{2014 International Joint Conference on Neural Networks
|
|
(IJCNN)}
|
|
\verb{doi}
|
|
\verb 10.1109/IJCNN.2014.6889491
|
|
\endverb
|
|
\field{issn}{2161-4393}
|
|
\field{pages}{3161\bibrangedash 3166}
|
|
\field{title}{Model predictive control of multi-robot formation based on
|
|
the simplified dual neural network}
|
|
\field{year}{2014}
|
|
\warn{\item Invalid format of field 'month'}
|
|
\endentry
|
|
|
|
\entry{ELFERIK2016117}{article}{}
|
|
\name{author}{3}{}{%
|
|
{{hash=FSE}{%
|
|
family={Ferik},
|
|
familyi={F\bibinitperiod},
|
|
given={Sami\bibnamedelima El},
|
|
giveni={S\bibinitperiod\bibinitdelim E\bibinitperiod},
|
|
}}%
|
|
{{hash=NMT}{%
|
|
family={Nasir},
|
|
familyi={N\bibinitperiod},
|
|
given={Mohammad\bibnamedelima Tariq},
|
|
giveni={M\bibinitperiod\bibinitdelim T\bibinitperiod},
|
|
}}%
|
|
{{hash=BU}{%
|
|
family={Baroudi},
|
|
familyi={B\bibinitperiod},
|
|
given={Uthman},
|
|
giveni={U\bibinitperiod},
|
|
}}%
|
|
}
|
|
\keyw{Cluster space, Behavioral control, Fuzzy adaptive, Multi-robots}
|
|
\strng{namehash}{FSENMTBU1}
|
|
\strng{fullhash}{FSENMTBU1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{abstract}{%
|
|
Cooperation between autonomous robot vehicles holds several promising
|
|
advantages like robustness, adaptability, configurability, and scalability.
|
|
Coordination between the different robots and the individual relative motion
|
|
represent both the main challenges especially when dealing with formation
|
|
control and maintenance. Cluster space control provides a simple concept for
|
|
controlling multi-agent formation. In the classical approach, formation
|
|
control is the unique task for the multi-agent system. In this paper, the
|
|
development and application of a novel Behavioral Adaptive Fuzzy-based
|
|
Cluster Space Control (BAFC) to non-holonomic robots is presented. By
|
|
applying a fuzzy priority control approach, BAFC deals with two conflicting
|
|
tasks: formation maintenance and target following. Using priority rules, the
|
|
fuzzy approach is used to adapt the controller and therefore the behavior of
|
|
the system, taking into accounts the errors in the formation states and the
|
|
target following states. The control approach is easy to implement and has
|
|
been implemented in this paper using SIMULINK real-time platform. The
|
|
communication between the different agents and the controller is established
|
|
through Wi-Fi link. Both simulation and experimental results demonstrate the
|
|
behavioral response where the robot performs the higher priority tasks first.
|
|
This new approach shows a great performance with a lower control signal when
|
|
benchmarked with previously known results in the literature.%
|
|
}
|
|
\verb{doi}
|
|
\verb https://doi.org/10.1016/j.asoc.2016.03.018
|
|
\endverb
|
|
\field{issn}{1568-4946}
|
|
\field{pages}{117 \bibrangedash 127}
|
|
\field{title}{A Behavioral Adaptive Fuzzy controller of multi robots in a
|
|
cluster space}
|
|
\verb{url}
|
|
\verb http://www.sciencedirect.com/science/article/pii/S1568494616301272
|
|
\endverb
|
|
\field{volume}{44}
|
|
\field{journaltitle}{Applied Soft Computing}
|
|
\field{year}{2016}
|
|
\endentry
|
|
|
|
\entry{YOSHIOKA20085149}{article}{}
|
|
\name{author}{2}{}{%
|
|
{{hash=YC}{%
|
|
family={Yoshioka},
|
|
familyi={Y\bibinitperiod},
|
|
given={Chika},
|
|
giveni={C\bibinitperiod},
|
|
}}%
|
|
{{hash=NT}{%
|
|
family={Namerikawa},
|
|
familyi={N\bibinitperiod},
|
|
given={Toru},
|
|
giveni={T\bibinitperiod},
|
|
}}%
|
|
}
|
|
\strng{namehash}{YCNT1}
|
|
\strng{fullhash}{YCNT1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{abstract}{%
|
|
This paper deals with formation control strategies based on Virtual
|
|
Structure (VS) for multi-vehicle systems. We propose several control laws for
|
|
networked multi-nonholonomic vehicle systems in order to achieve VS
|
|
consensus, VS Flocking and VS Flocking with collision-avoidance. First,
|
|
Virtual Vehicle for the feedback linearization is considered, and we propose
|
|
VS consensus and Flocking control laws based on a virtual structure and
|
|
consensus algorithms. Then, VS Flocking control law considering collision
|
|
avoidance is proposed and its asymptotical stability is proven. Finally,
|
|
simulation and experimental results show effectiveness of our proposed
|
|
approaches.%
|
|
}
|
|
\verb{doi}
|
|
\verb https://doi.org/10.3182/20080706-5-KR-1001.00865
|
|
\endverb
|
|
\field{issn}{1474-6670}
|
|
\field{note}{17th IFAC World Congress}
|
|
\field{number}{2}
|
|
\field{pages}{5149 \bibrangedash 5154}
|
|
\field{title}{Formation Control of Nonholonomic Multi-Vehicle Systems based
|
|
on Virtual Structure}
|
|
\verb{url}
|
|
\verb http://www.sciencedirect.com/science/article/pii/S1474667016397609
|
|
\endverb
|
|
\field{volume}{41}
|
|
\field{journaltitle}{IFAC Proceedings Volumes}
|
|
\field{year}{2008}
|
|
\endentry
|
|
|
|
\entry{OH2015424}{article}{}
|
|
\name{author}{3}{}{%
|
|
{{hash=OKK}{%
|
|
family={Oh},
|
|
familyi={O\bibinitperiod},
|
|
given={Kwang-Kyo},
|
|
giveni={K\bibinithyphendelim K\bibinitperiod},
|
|
}}%
|
|
{{hash=PMC}{%
|
|
family={Park},
|
|
familyi={P\bibinitperiod},
|
|
given={Myoung-Chul},
|
|
giveni={M\bibinithyphendelim C\bibinitperiod},
|
|
}}%
|
|
{{hash=AHS}{%
|
|
family={Ahn},
|
|
familyi={A\bibinitperiod},
|
|
given={Hyo-Sung},
|
|
giveni={H\bibinithyphendelim S\bibinitperiod},
|
|
}}%
|
|
}
|
|
\keyw{Formation control, Position-based control, Displacement-based
|
|
control, Distance-based control}
|
|
\strng{namehash}{OKKPMCAHS1}
|
|
\strng{fullhash}{OKKPMCAHS1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{abstract}{%
|
|
We present a survey of formation control of multi-agent systems. Focusing
|
|
on the sensing capability and the interaction topology of agents, we
|
|
categorize the existing results into position-, displacement-, and
|
|
distance-based control. We then summarize problem formulations, discuss
|
|
distinctions, and review recent results of the formation control schemes.
|
|
Further we review some other results that do not fit into the
|
|
categorization.%
|
|
}
|
|
\verb{doi}
|
|
\verb https://doi.org/10.1016/j.automatica.2014.10.022
|
|
\endverb
|
|
\field{issn}{0005-1098}
|
|
\field{pages}{424 \bibrangedash 440}
|
|
\field{title}{A survey of multi-agent formation control}
|
|
\verb{url}
|
|
\verb http://www.sciencedirect.com/science/article/pii/S0005109814004038
|
|
\endverb
|
|
\field{volume}{53}
|
|
\field{journaltitle}{Automatica}
|
|
\field{year}{2015}
|
|
\endentry
|
|
|
|
\entry{Oh2014}{article}{}
|
|
\name{author}{2}{}{%
|
|
{{hash=OKK}{%
|
|
family={Oh},
|
|
familyi={O\bibinitperiod},
|
|
given={Kwang-Kyo},
|
|
giveni={K\bibinithyphendelim K\bibinitperiod},
|
|
}}%
|
|
{{hash=AHS}{%
|
|
family={Ahn},
|
|
familyi={A\bibinitperiod},
|
|
given={Hyo-Sung},
|
|
giveni={H\bibinithyphendelim S\bibinitperiod},
|
|
}}%
|
|
}
|
|
\keyw{formation control, distance-based control, graph rigidity,
|
|
Hamiltonian systems, gradient systems}
|
|
\strng{namehash}{OKKAHS1}
|
|
\strng{fullhash}{OKKAHS1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{abstract}{%
|
|
SUMMARYWe study the local asymptotic stability of undirected formations of
|
|
single-integrator and double-integrator modeled agents based on interagent
|
|
distance control. First, we show that n-dimensional undirected formations of
|
|
single-integrator modeled agents are locally asymptotically stable under a
|
|
gradient control law. The stability analysis in this paper reveals that the
|
|
local asymptotic stability does not require the infinitesimal rigidity of the
|
|
formations. Second, on the basis of the topological equivalence of a
|
|
dissipative Hamiltonian system and a gradient system, we show that the local
|
|
asymptotic stability of undirected formations of double-integrator modeled
|
|
agents in n-dimensional space is achieved under a gradient-like control law.
|
|
Simulation results support the validity of the stability analysis. Copyright
|
|
© 2013 John Wiley \& Sons, Ltd.%
|
|
}
|
|
\verb{doi}
|
|
\verb 10.1002/rnc.2967
|
|
\endverb
|
|
\verb{eprint}
|
|
\verb https://onlinelibrary.wiley.com/doi/pdf/10.1002/rnc.2967
|
|
\endverb
|
|
\field{number}{12}
|
|
\field{pages}{1809\bibrangedash 1820}
|
|
\field{title}{Distance-based undirected formations of single-integrator and
|
|
double-integrator modeled agents in n-dimensional space}
|
|
\verb{url}
|
|
\verb https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.2967
|
|
\endverb
|
|
\field{volume}{24}
|
|
\field{journaltitle}{International Journal of Robust and Nonlinear Control}
|
|
\field{year}{2014}
|
|
\endentry
|
|
|
|
\entry{Rozenheck2015}{inproceedings}{}
|
|
\name{author}{3}{}{%
|
|
{{hash=RO}{%
|
|
family={{Rozenheck}},
|
|
familyi={R\bibinitperiod},
|
|
given={O.},
|
|
giveni={O\bibinitperiod},
|
|
}}%
|
|
{{hash=ZS}{%
|
|
family={{Zhao}},
|
|
familyi={Z\bibinitperiod},
|
|
given={S.},
|
|
giveni={S\bibinitperiod},
|
|
}}%
|
|
{{hash=ZD}{%
|
|
family={{Zelazo}},
|
|
familyi={Z\bibinitperiod},
|
|
given={D.},
|
|
giveni={D\bibinitperiod},
|
|
}}%
|
|
}
|
|
\keyw{gradient methods;multi-agent systems;PI control;velocity
|
|
control;proportional-integral controller;distance-based formation
|
|
tracking;multiagent formation control problem;additional velocity reference
|
|
command;interagent distance constraints;gradient formation
|
|
controller;formation error dynamics;steady-state formation error;Stability
|
|
analysis;Steady-state;Symmetric matrices;Aerodynamics;Jacobian
|
|
matrices;Numerical stability;Asymptotic stability}
|
|
\strng{namehash}{ROZSZD1}
|
|
\strng{fullhash}{ROZSZD1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{booktitle}{2015 European Control Conference (ECC)}
|
|
\verb{doi}
|
|
\verb 10.1109/ECC.2015.7330781
|
|
\endverb
|
|
\field{pages}{1693\bibrangedash 1698}
|
|
\field{title}{A proportional-integral controller for distance-based
|
|
formation tracking}
|
|
\field{year}{2015}
|
|
\warn{\item Invalid format of field 'month'}
|
|
\endentry
|
|
|
|
\entry{CORREIA20127}{article}{}
|
|
\name{author}{3}{}{%
|
|
{{hash=CMD}{%
|
|
family={Correia},
|
|
familyi={C\bibinitperiod},
|
|
given={Mariane\bibnamedelima Dourado},
|
|
giveni={M\bibinitperiod\bibinitdelim D\bibinitperiod},
|
|
}}%
|
|
{{hash=GA}{%
|
|
family={Gustavo},
|
|
familyi={G\bibinitperiod},
|
|
given={André},
|
|
giveni={A\bibinitperiod},
|
|
}}%
|
|
{{hash=CS}{%
|
|
family={Conceição},
|
|
familyi={C\bibinitperiod},
|
|
given={Scolari},
|
|
giveni={S\bibinitperiod},
|
|
}}%
|
|
}
|
|
\keyw{Models, Friction, Parameter estimation, Autonomous mobile robots}
|
|
\strng{namehash}{CMDGACS1}
|
|
\strng{fullhash}{CMDGACS1}
|
|
\field{labelnamesource}{author}
|
|
\field{labeltitlesource}{title}
|
|
\field{abstract}{%
|
|
This paper presents a model of a three-wheeled omnidirectional robot
|
|
including a static friction model. Besides the modeling is presented a
|
|
practical approach in order to estimate the coefficients of coulomb and
|
|
viscous friction, which used sensory information about force and velocity of
|
|
the robot's center of mass. The proposed model model has the voltages of the
|
|
motors as inputs and the linear and angular velocities of the robot as
|
|
outputs. Actual results and simulation with the estimated model are compared
|
|
to demonstrate the performance of the proposed modeling.%
|
|
}
|
|
\verb{doi}
|
|
\verb https://doi.org/10.3182/20120905-3-HR-2030.00002
|
|
\endverb
|
|
\field{issn}{1474-6670}
|
|
\field{note}{10th IFAC Symposium on Robot Control}
|
|
\field{number}{22}
|
|
\field{pages}{7 \bibrangedash 12}
|
|
\field{title}{Modeling of a Three Wheeled Omnidirectional Robot Including
|
|
Friction Models}
|
|
\verb{url}
|
|
\verb http://www.sciencedirect.com/science/article/pii/S1474667016335807
|
|
\endverb
|
|
\field{volume}{45}
|
|
\field{journaltitle}{IFAC Proceedings Volumes}
|
|
\field{year}{2012}
|
|
\endentry
|
|
\enddatalist
|
|
\endinput
|