-p-formation-control/article.bbl

442 lines
15 KiB
Plaintext

% $ biblatex auxiliary file $
% $ biblatex bbl format version 3.1 $
% Do not modify the above lines!
%
% This is an auxiliary file used by the 'biblatex' package.
% This file may safely be deleted. It will be recreated as
% required.
%
\begingroup
\makeatletter
\@ifundefined{ver@biblatex.sty}
{\@latex@error
{Missing 'biblatex' package}
{The bibliography requires the 'biblatex' package.}
\aftergroup\endinput}
{}
\endgroup
\datalist[entry]{none/global//global/global}
\entry{Parker2003}{article}{}
\name{author}{1}{}{%
{{hash=PL}{%
family={Parker},
familyi={P\bibinitperiod},
given={Lynne},
giveni={L\bibinitperiod},
}}%
}
\strng{namehash}{PL1}
\strng{fullhash}{PL1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\verb{doi}
\verb 10.1007/BF02480877
\endverb
\field{pages}{1\bibrangedash 5}
\field{title}{Current research in multirobot systems}
\field{volume}{7}
\field{journaltitle}{Artificial Life and Robotics}
\field{month}{03}
\field{year}{2003}
\endentry
\entry{Guanghua2013}{inproceedings}{}
\name{author}{4}{}{%
{{hash=GW}{%
family={Guanghua},
familyi={G\bibinitperiod},
given={Wang},
giveni={W\bibinitperiod},
}}%
{{hash=DL}{%
family={Deyi},
familyi={D\bibinitperiod},
given={Li},
giveni={L\bibinitperiod},
}}%
{{hash=WG}{%
family={Wenyan},
familyi={W\bibinitperiod},
given={Gan},
giveni={G\bibinitperiod},
}}%
{{hash=PJ}{%
family={Peng},
familyi={P\bibinitperiod},
given={Jia},
giveni={J\bibinitperiod},
}}%
}
\strng{namehash}{GW+1}
\strng{fullhash}{GWDLWGPJ1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\verb{doi}
\verb 10.1109/ISDEA.2012.316
\endverb
\field{isbn}{978-1-4673-4893-5}
\field{pages}{1335\bibrangedash 1339}
\field{title}{Study on Formation Control of Multi-Robot Systems}
\field{month}{01}
\field{year}{2013}
\endentry
\entry{6889491}{inproceedings}{}
\name{author}{3}{}{%
{{hash=WX}{%
family={{Wang}},
familyi={W\bibinitperiod},
given={X.},
giveni={X\bibinitperiod},
}}%
{{hash=YZ}{%
family={{Yan}},
familyi={Y\bibinitperiod},
given={Z.},
giveni={Z\bibinitperiod},
}}%
{{hash=WJ}{%
family={{Wang}},
familyi={W\bibinitperiod},
given={J.},
giveni={J\bibinitperiod},
}}%
}
\keyw{dynamic programming;mobile robots;multi-robot
systems;neurocontrollers;optimal control;predictive control;quadratic
programming;recurrent neural nets;torque control;trajectory control;model
predictive control approach;multirobot formation control problem;simplified
dual neural network;leader-follower scheme;desired trajectory
tracking;dynamic quadratic optimization problem;one-layer recurrent neural
network;optimal control input;Vectors;Lead;Wheels;Neural networks;Robot
kinematics;Mathematical model}
\strng{namehash}{WXYZWJ1}
\strng{fullhash}{WXYZWJ1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{booktitle}{2014 International Joint Conference on Neural Networks
(IJCNN)}
\verb{doi}
\verb 10.1109/IJCNN.2014.6889491
\endverb
\field{issn}{2161-4393}
\field{pages}{3161\bibrangedash 3166}
\field{title}{Model predictive control of multi-robot formation based on
the simplified dual neural network}
\field{year}{2014}
\warn{\item Invalid format of field 'month'}
\endentry
\entry{ELFERIK2016117}{article}{}
\name{author}{3}{}{%
{{hash=FSE}{%
family={Ferik},
familyi={F\bibinitperiod},
given={Sami\bibnamedelima El},
giveni={S\bibinitperiod\bibinitdelim E\bibinitperiod},
}}%
{{hash=NMT}{%
family={Nasir},
familyi={N\bibinitperiod},
given={Mohammad\bibnamedelima Tariq},
giveni={M\bibinitperiod\bibinitdelim T\bibinitperiod},
}}%
{{hash=BU}{%
family={Baroudi},
familyi={B\bibinitperiod},
given={Uthman},
giveni={U\bibinitperiod},
}}%
}
\keyw{Cluster space, Behavioral control, Fuzzy adaptive, Multi-robots}
\strng{namehash}{FSENMTBU1}
\strng{fullhash}{FSENMTBU1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{%
Cooperation between autonomous robot vehicles holds several promising
advantages like robustness, adaptability, configurability, and scalability.
Coordination between the different robots and the individual relative motion
represent both the main challenges especially when dealing with formation
control and maintenance. Cluster space control provides a simple concept for
controlling multi-agent formation. In the classical approach, formation
control is the unique task for the multi-agent system. In this paper, the
development and application of a novel Behavioral Adaptive Fuzzy-based
Cluster Space Control (BAFC) to non-holonomic robots is presented. By
applying a fuzzy priority control approach, BAFC deals with two conflicting
tasks: formation maintenance and target following. Using priority rules, the
fuzzy approach is used to adapt the controller and therefore the behavior of
the system, taking into accounts the errors in the formation states and the
target following states. The control approach is easy to implement and has
been implemented in this paper using SIMULINK real-time platform. The
communication between the different agents and the controller is established
through Wi-Fi link. Both simulation and experimental results demonstrate the
behavioral response where the robot performs the higher priority tasks first.
This new approach shows a great performance with a lower control signal when
benchmarked with previously known results in the literature.%
}
\verb{doi}
\verb https://doi.org/10.1016/j.asoc.2016.03.018
\endverb
\field{issn}{1568-4946}
\field{pages}{117 \bibrangedash 127}
\field{title}{A Behavioral Adaptive Fuzzy controller of multi robots in a
cluster space}
\verb{url}
\verb http://www.sciencedirect.com/science/article/pii/S1568494616301272
\endverb
\field{volume}{44}
\field{journaltitle}{Applied Soft Computing}
\field{year}{2016}
\endentry
\entry{YOSHIOKA20085149}{article}{}
\name{author}{2}{}{%
{{hash=YC}{%
family={Yoshioka},
familyi={Y\bibinitperiod},
given={Chika},
giveni={C\bibinitperiod},
}}%
{{hash=NT}{%
family={Namerikawa},
familyi={N\bibinitperiod},
given={Toru},
giveni={T\bibinitperiod},
}}%
}
\strng{namehash}{YCNT1}
\strng{fullhash}{YCNT1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{%
This paper deals with formation control strategies based on Virtual
Structure (VS) for multi-vehicle systems. We propose several control laws for
networked multi-nonholonomic vehicle systems in order to achieve VS
consensus, VS Flocking and VS Flocking with collision-avoidance. First,
Virtual Vehicle for the feedback linearization is considered, and we propose
VS consensus and Flocking control laws based on a virtual structure and
consensus algorithms. Then, VS Flocking control law considering collision
avoidance is proposed and its asymptotical stability is proven. Finally,
simulation and experimental results show effectiveness of our proposed
approaches.%
}
\verb{doi}
\verb https://doi.org/10.3182/20080706-5-KR-1001.00865
\endverb
\field{issn}{1474-6670}
\field{note}{17th IFAC World Congress}
\field{number}{2}
\field{pages}{5149 \bibrangedash 5154}
\field{title}{Formation Control of Nonholonomic Multi-Vehicle Systems based
on Virtual Structure}
\verb{url}
\verb http://www.sciencedirect.com/science/article/pii/S1474667016397609
\endverb
\field{volume}{41}
\field{journaltitle}{IFAC Proceedings Volumes}
\field{year}{2008}
\endentry
\entry{OH2015424}{article}{}
\name{author}{3}{}{%
{{hash=OKK}{%
family={Oh},
familyi={O\bibinitperiod},
given={Kwang-Kyo},
giveni={K\bibinithyphendelim K\bibinitperiod},
}}%
{{hash=PMC}{%
family={Park},
familyi={P\bibinitperiod},
given={Myoung-Chul},
giveni={M\bibinithyphendelim C\bibinitperiod},
}}%
{{hash=AHS}{%
family={Ahn},
familyi={A\bibinitperiod},
given={Hyo-Sung},
giveni={H\bibinithyphendelim S\bibinitperiod},
}}%
}
\keyw{Formation control, Position-based control, Displacement-based
control, Distance-based control}
\strng{namehash}{OKKPMCAHS1}
\strng{fullhash}{OKKPMCAHS1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{%
We present a survey of formation control of multi-agent systems. Focusing
on the sensing capability and the interaction topology of agents, we
categorize the existing results into position-, displacement-, and
distance-based control. We then summarize problem formulations, discuss
distinctions, and review recent results of the formation control schemes.
Further we review some other results that do not fit into the
categorization.%
}
\verb{doi}
\verb https://doi.org/10.1016/j.automatica.2014.10.022
\endverb
\field{issn}{0005-1098}
\field{pages}{424 \bibrangedash 440}
\field{title}{A survey of multi-agent formation control}
\verb{url}
\verb http://www.sciencedirect.com/science/article/pii/S0005109814004038
\endverb
\field{volume}{53}
\field{journaltitle}{Automatica}
\field{year}{2015}
\endentry
\entry{Oh2014}{article}{}
\name{author}{2}{}{%
{{hash=OKK}{%
family={Oh},
familyi={O\bibinitperiod},
given={Kwang-Kyo},
giveni={K\bibinithyphendelim K\bibinitperiod},
}}%
{{hash=AHS}{%
family={Ahn},
familyi={A\bibinitperiod},
given={Hyo-Sung},
giveni={H\bibinithyphendelim S\bibinitperiod},
}}%
}
\keyw{formation control, distance-based control, graph rigidity,
Hamiltonian systems, gradient systems}
\strng{namehash}{OKKAHS1}
\strng{fullhash}{OKKAHS1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{%
SUMMARYWe study the local asymptotic stability of undirected formations of
single-integrator and double-integrator modeled agents based on interagent
distance control. First, we show that n-dimensional undirected formations of
single-integrator modeled agents are locally asymptotically stable under a
gradient control law. The stability analysis in this paper reveals that the
local asymptotic stability does not require the infinitesimal rigidity of the
formations. Second, on the basis of the topological equivalence of a
dissipative Hamiltonian system and a gradient system, we show that the local
asymptotic stability of undirected formations of double-integrator modeled
agents in n-dimensional space is achieved under a gradient-like control law.
Simulation results support the validity of the stability analysis. Copyright
© 2013 John Wiley \& Sons, Ltd.%
}
\verb{doi}
\verb 10.1002/rnc.2967
\endverb
\verb{eprint}
\verb https://onlinelibrary.wiley.com/doi/pdf/10.1002/rnc.2967
\endverb
\field{number}{12}
\field{pages}{1809\bibrangedash 1820}
\field{title}{Distance-based undirected formations of single-integrator and
double-integrator modeled agents in n-dimensional space}
\verb{url}
\verb https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.2967
\endverb
\field{volume}{24}
\field{journaltitle}{International Journal of Robust and Nonlinear Control}
\field{year}{2014}
\endentry
\entry{Rozenheck2015}{inproceedings}{}
\name{author}{3}{}{%
{{hash=RO}{%
family={{Rozenheck}},
familyi={R\bibinitperiod},
given={O.},
giveni={O\bibinitperiod},
}}%
{{hash=ZS}{%
family={{Zhao}},
familyi={Z\bibinitperiod},
given={S.},
giveni={S\bibinitperiod},
}}%
{{hash=ZD}{%
family={{Zelazo}},
familyi={Z\bibinitperiod},
given={D.},
giveni={D\bibinitperiod},
}}%
}
\keyw{gradient methods;multi-agent systems;PI control;velocity
control;proportional-integral controller;distance-based formation
tracking;multiagent formation control problem;additional velocity reference
command;interagent distance constraints;gradient formation
controller;formation error dynamics;steady-state formation error;Stability
analysis;Steady-state;Symmetric matrices;Aerodynamics;Jacobian
matrices;Numerical stability;Asymptotic stability}
\strng{namehash}{ROZSZD1}
\strng{fullhash}{ROZSZD1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{booktitle}{2015 European Control Conference (ECC)}
\verb{doi}
\verb 10.1109/ECC.2015.7330781
\endverb
\field{pages}{1693\bibrangedash 1698}
\field{title}{A proportional-integral controller for distance-based
formation tracking}
\field{year}{2015}
\warn{\item Invalid format of field 'month'}
\endentry
\entry{CORREIA20127}{article}{}
\name{author}{3}{}{%
{{hash=CMD}{%
family={Correia},
familyi={C\bibinitperiod},
given={Mariane\bibnamedelima Dourado},
giveni={M\bibinitperiod\bibinitdelim D\bibinitperiod},
}}%
{{hash=GA}{%
family={Gustavo},
familyi={G\bibinitperiod},
given={André},
giveni={A\bibinitperiod},
}}%
{{hash=CS}{%
family={Conceição},
familyi={C\bibinitperiod},
given={Scolari},
giveni={S\bibinitperiod},
}}%
}
\keyw{Models, Friction, Parameter estimation, Autonomous mobile robots}
\strng{namehash}{CMDGACS1}
\strng{fullhash}{CMDGACS1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{%
This paper presents a model of a three-wheeled omnidirectional robot
including a static friction model. Besides the modeling is presented a
practical approach in order to estimate the coefficients of coulomb and
viscous friction, which used sensory information about force and velocity of
the robot's center of mass. The proposed model model has the voltages of the
motors as inputs and the linear and angular velocities of the robot as
outputs. Actual results and simulation with the estimated model are compared
to demonstrate the performance of the proposed modeling.%
}
\verb{doi}
\verb https://doi.org/10.3182/20120905-3-HR-2030.00002
\endverb
\field{issn}{1474-6670}
\field{note}{10th IFAC Symposium on Robot Control}
\field{number}{22}
\field{pages}{7 \bibrangedash 12}
\field{title}{Modeling of a Three Wheeled Omnidirectional Robot Including
Friction Models}
\verb{url}
\verb http://www.sciencedirect.com/science/article/pii/S1474667016335807
\endverb
\field{volume}{45}
\field{journaltitle}{IFAC Proceedings Volumes}
\field{year}{2012}
\endentry
\enddatalist
\endinput