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Abstract—This work considers a multi-agent formation
control problem where a designated leader is subjected
to an additional velocity reference command. The entire
formation should follow the leader while maintaining the
inter-agent distance constraints. By augmenting a standard
gradient formation controller with a proportional-integral
control on the formation error, we are able to prove the sta-
bility of the formation error dynamics with velocity input
while ensuring zero steady-state formation error. Numerical
simulations are shown to illustrate the theoretical results.

I. INTRODUCTION

In recent years, there has been much attention given to
the control of formations of multiple agents across many
application domains. Of the many control strategies for
formation control, distance-constrained formation stabi-
lization has been extensively studied [1]–[8]. A closely
related problem is formation tracking where the objective
is to find a control scheme that allow multiple robots
to maintain some given formation while executing addi-
tional tasks such as velocity tracking or leader following.

Distance-constrained formation control aims at main-
taining inter-agent distances and utilizes relative mea-
surements (i.e., distances and relative-positions) to gen-
erate the control action. The theory of rigidity has
emerged as the correct mathematical foundation for
defining distance-constrained formations and proving
that distance-constrained formation control strategies are
stabilizing [3], [9], [10].

The stability analysis of these control strategies has
been investigated in many works. In [11], application of
the center manifold theorem was used to prove the local
stability of infinitesimally rigid formations. Lyapunov-
based approaches were employed in [6], [12]. As a first
contribution of our work, we provide an alternative local
stability proof by deriving the dynamics of the formation
error and employing Lyapunov’s indirect method.
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Despite its apparent utility, there are very few existing
studies addressing velocity tracking in formation control.
The aid of one or more virtual agents to help the
formation achieve a desired common velocity or to arrive
at a desired destination is considered in [13], [14].
In particular, [15] proposed a flocking algorithm with
a virtual leader by including a navigational feedback
mechanism to every agent under the assumption that
all agents are being informed. In [6], [14], [16], the
formation tracking problem is considered for agents with
second-order dynamics.

In this work, we consider a collection of agents with
integrator dynamics tasked with maintaining a distance-
constrained formation. One agent in the ensemble is
also designated as a leader and is subjected to an
external velocity reference command. In the absence
of any additional control action, the standard rigidity
based formation stabilization solutions will exhibit a
steady-state formation error [17]. To address this, we
augment the gradient based formation controller with a
proportional and integral (PI) control on the formation
error. We show that such a scheme preserves the sta-
bility properties of the formation error dynamics while
ensuring a zero steady-state formation error. This scheme
has many advantages, including a simple and distributed
implementation and no need for virtual leaders.

The paper is organized as follows. An overview on
rigidity theory is provided in Section II. The well known
distance-constrained formation control law and stability
analysis is presented in Section III. The PI formation
controller with stability and performance analysis is
presented in Section IV. Numerical simulations are given
in Section V to verify the theoretical results. Section VI
contains concluding remarks and areas for future work.

Notations: Given A1, . . . , An ∈ Rp×q , when the
range of i is clear from the context, denote diag(Ai) ,
blkdiag{A1, . . . , An} ∈ Rnp×nq . Denote In as the n×n
identity matrix. Let 1n = [1, . . . , 1]T ∈ Rn be the
vectors of all ones. The eigenvalues of a symmetric
positive semi-definite matrix A are denoted as 0 ≤
λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A).
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II. PRELIMINARIES

A. Graph Theory

An undirected graph G = (V, E) consists of a vertex
set V and an edge set E ⊆ V×V , where an edge (i, j) is
an unordered pair of distinct nodes i and j. We denote
the number of nodes in a graph as n , |V| and the
number of edges as m , |E|. If (i, j) ∈ E , then i and j
are said to be adjacent. The set of neighbors of vertex
i is denoted as Ni , {j ∈ V : (i, j) ∈ E}, and also
noted as i ∼ j. An orientation of an undirected graph is
the assignment of a direction to each edge. An oriented
graph is an undirected graph together with a particular
orientation. The incidence matrix E ∈ Rn×m of an
oriented graph is the {0,±1} matrix with rows indexed
by vertices and columns by edges. For any connected
graph, it then follows that Null (ET) = span{1n} [18].
The Laplacian of a graph is a symmetric matrix defined
as L(G) = EET.

B. Rigidity Theory

Rigidity theory plays an important role in distance-
based formation control. We next review some important
definitions and results from rigidity theory; for a more
detailed review, see [3], [9].

A d-dimensional configuration is a finite collection of
n points, x = [xT1 , . . . , x

T
n ]T ∈ R2n, where xi ∈ R2 and

xi 6= xj for all i 6= j. A framework, denoted as G(x), is
an undirected graph G together with a configuration x,
where vertex i in the graph is mapped to the point xi.
It is often useful to work with oriented graphs. Suppose
(i, j) ∈ E corresponds to the kth directed edge in an
oriented graph and define the edge vectors for a frame-
work, sometimes called the relative position vector, as
ek , xj − xi. The edge vectors of the entire framework
can be denoted as e =

[
eT1 · · · eTm

]T ∈ R2m.
Two frameworks G(x) and G(y) in R2 are equivalent

if ‖xi − xj‖ = ‖yi − yj‖ for all {(i, j)} ∈ E . Two
frameworks G(x) and G(y) in R2 are congruent if ‖xi−
xj‖ = ‖yi − yj‖ for all i, j ∈ V . A framework G(x) is
globally rigid if every framework that is equivalent to
G(x) is also congruent to G(x). A framework G(x) is
rigid if there exists an ε > 0 such that if framework
G(y) is equivalent to G(x) and satisfies ‖yi − xi‖ ≤ ε
for all i ∈ V , then G(y) is congruent to G(x).

Given an arbitrary oriented graph, consider a frame-
work G(x) with the edge vectors as {ek}mk=1. Define the
edge function, F : R2n × G → Rm as

F (x,G) , [‖e1‖2, . . . , ‖em‖2]T .

The rigidity matrix R(x) associated with a framework
G(x) is the Jacobian of the edge function, R(x) ,

∂F (x,G)/∂x ∈ Rm×2n. A short calculation shows that
R(x) can be equivalently written as

R(x) = diag(eTi )(ET ⊗ I2). (1)

The symmetric rigidity matrix associated with a frame-
work G(x) is the 2n × 2n matrix defined as R(x) ,
R(x)TR(x) [2].

If dx satisfies R(x)dx = 0, then dx is called an
infinitesimal flex of G(x). Framework G(x) is infinites-
imally rigid if the only infinitesimal flexes are trivial,
i.e., are the rigid body rotations and translations of the
framework. A framework G(x) is minimally infinitesi-
mally rigid (MIR) if it is infinitesimally rigid and the
number of edges is m = 2n− 3.

Lemma 1. ( [19]) A framework G(x) is infinitesimally
rigid if and only if rank(R(x)) = 2n− 3.

Since there are 2n − 3 edges in an MIR framework,
the number of rows of the rigidity matrix must also be
2n− 3, leading to the following corollary.

Corollary 1. If a framework is MIR, then the rigidity
matrix R(x) has full row rank.

Corollary 1 gives a sufficient condition for the rigidity
matrix of a framework having full row rank. The notion
of MIR frameworks and Corollary 1 turn out to be an
important property for deriving the stability of distance-
constrained formation problems [20].

III. DISTANCE-CONSTRAINED
FORMATION STABILIZATION

In this section, we first present the well known
gradient control law for distance-constrained formation
problems [11]. A contribution of this section is to derive
an associated dynamical system based on the formation
error. We then provide an alternative stability proof using
the error dynamics and Lyapunov’s indirect method.

Consider n (n ≥ 2) agents, modeled as kinematic
point masses, moving in a 2-dimensional Euclidean
space. The motion of the agents are modeled as first-
order integrators,

ẋi(t) = ui(t), i = 1, . . . , n, (2)

where xi(t) ∈ R2 is the position of the i-th robot and
ui(t) ∈ R2 denotes the control input.

Denote d ∈ Rm as the distance constraint vector with
dk

2 as its entries. Each entry, dk, represents the desired
distance between agent i and j for edge (i, j) ∈ E .
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The distance error δ ∈ Rm is defined as the difference
between the measured relative distances and the desired
inter-agent distances,

δk = ‖ek‖2 − d2k, k ∈ {1, . . . ,m}. (3)

In [11], a gradient control law was proposed to locally
and asymptotically stabilize infinitesimally rigid for-
mations. The associated positive semi-definite potential
function is defined as

Φ(e) =
1

2

m∑
k=1

(
‖ek‖2 − d2k

)2
=

1

2

m∑
k=1

δ2k. (4)

Observe that Φ(e) = 0 if and only if ‖ek‖2 = d2k ∀k =
1, . . . ,m. The control for each agent is then taken as the
negative gradient of the potential function (4),

ui(t) = −
(
∂Φ(e)

∂xi

)
= −

∑
j∼i

(
‖ek‖2 − dk2

)
ek. (5)

The closed loop dynamics can be written in state-space
form as

ẋ(t) = −R(x)x(t) +R(x)Td. (6)

A. Distance Error Dynamics and Stability Analysis

We now provide an alternative approach for the local
stability analysis of the distance-constrained formation
control in (6). Factorization of the dynamics in (6) yields

ẋ(t) = −R(x)T (R(x)x(t)− d) . (7)

Note that from (1) it can be seen that the expression
R(x)x(t) − d is precisely the distance error defined in
(3), i.e.,

δ , R(x)x(t)− d = diag(eTi ) (ET ⊗ I2)x(t)︸ ︷︷ ︸
e

−d. (8)

As we are concerned with the behavior of the forma-
tion error, we now derive the formation error dynamics
by differentiating (8) with respect to time,

δ̇ = 2 diag(eTi )ė = 2 diag(eTi )(ET ⊗ I2)ẋ. (9)

Combining (1) and (7) yields

δ̇ = f(δ) = −2R(x)R(x)T (R(x)x(t)− d)︸ ︷︷ ︸
δ

. (10)

It is well known that the direct linearization of (6)
around the target formation has multiple eigenvalues
at the origin, and consequently cannot be analyzed by
Lyapunov’s indirect method [11]. In contrast, we now
show that the linearization of the δ-dynamics in (10)
leads to a Hurwitz state matrix, and thus local asymptotic
stability is readily shown. In this direction, we first

introduce the following assumption, which is widely
used in the literature [8], [12].

Assumption 1. A framework G(x) satisfying the dis-
tance constraints {dij}(i,j)∈E is minimally infinitesi-
mally rigid.

Theorem 1. Under Assumption 1, the origin of the
formation error dynamics (10) is locally asymptotically
stable.

Proof. Define a set Ω = {x|R(x)x − d = 0}. For any
x∗ ∈ Ω , δ = 0 by definition, hence any x∗ ∈ Ω
corresponds to an equilibrium of (10). Denote M(x) =
R(x)R(x)T. Evaluating the Jacobian of the dynamics
(10) at the equilibrium δ = 0 (x = x∗) gives

∂f(δ)

∂δ

∣∣∣∣
δ=0,x=x∗

=
∂ (−2M(x)δ)

∂δ

∣∣∣∣
δ=0,x=x∗

(11)

= −2

(
∂ (M(x))

∂δ
δ

)∣∣∣∣
δ=0,x=x∗

−2

(
M(x)

∂δ

∂δ

)∣∣∣∣
δ=0,x=x∗

.

The linearized dynamics can thus be expressed as

˙̃
δ = −2M(x∗)δ̃ , (12)

where δ̃ is the variation of the state around the equilib-
rium point.

From Assumption 1 and Corollary 1, it follows that
R(x∗) has full row rank, and therefore M(x∗) is a
symmetric positive-definite matrix. Thus, the equilibrium
point δ = 0 of the nonlinear formation error dynamics
is locally asymptotically stable.

The result of Theorem 1 shows that examining the
linearized formation error dynamics allows for the use
of Lyapunov’s indirect method to show local asymptotic
stabilization of the formation. In fact, exponential stabil-
ity can also be shown using a similar approach as found
in [12].

IV. FORMATION CONTROL WITH
VELOCITY REFERENCE

We now consider the formation controller in (6) and
designate one agent as a leader. The leader is injected
with an external reference velocity command, and the
objective of the formation is to follow the leader while
maintaining the formation shape. Without the presence
of any additional control, such a scheme will always
lead to a steady-state error for the formation (i.e.,
limt→∞ ‖δ(t)‖ > 0) [17]. This phenomena is demon-
strated by a simple example shown in Figure 1(a). Here,
4 agents are tasked with maintaining a diamond shape
formation (satisfying Assumption 1) while tracking the
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(a) An MIR formation tracking a
leader.
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(b) A plot of ‖δ(t)‖ showing a
steady-state error.

Fig. 1: Without any additional control, tracking a leader leads to a
steady-state error in the formation.

designated leader (marked in green). Figure 1(b) plots
‖δ(t)‖ showing a non-zero steady-state error.

The addition of a velocity reference to the agent
designated as a leader together with the control law in
(5) leads to the following dynamics,

ẋ(t) = −R(x)T (R(x)x(t)− d) +Bvref . (13)

Here, B ∈ R2n×2 is used to indicate which agent in the
formation may receive the external velocity reference,
vref ∈ R2 (i.e., if agent i is the leader, then the ith
block of B is I2, and the remaining blocks are zero). The
dynamics of the formation error vector with an external
velocity reference can be derived from (13) as

δ̇ = −2R(x)R(x)TκP δ + 2R(x)Bvref . (14)

The steady-state error in the formation can be eliminated
by introducing an appropriate stabilizing control into the
control loop. A general control scheme is presented in
Figure 2 and can be described as

ẋ(t) = u(t) +Bvref , (15)

u(t) = −R(x)TC
(
R(x)x(t)− d

)
, (16)

where C
(
R(x)x(t)−d

)
= C(δ), can be any stabilizing

controller. In addition to preserving the stability of
the closed-loop dynamics, the controller C should also
eliminate the steady-state formation error dynamics, i.e.,

lim
t→∞

‖δ(t)‖ = 0.

Before analyzing the stability of the control scheme
proposed in (16), we first examine the performance of
the formation with a leader. In particular, we show that
for the dynamics in (16), assuming that C is a stabilizing
controller, the velocity of the formation centroid will
move at a velocity proportional to the reference, vref .

Controller R(x)T

B

ˆ

R(x)

d

δ

Vref

ẋ x

−

Fig. 2: The formation control is augmented with an additional con-
troller to eliminate the steady-state error in the formation.

In this direction, first define the centroid as

x̄(t) =
1

n

n∑
i=1

xi(t) =
1

n

(
1T
n ⊗ I2

)
x(t). (17)

Theorem 2. Consider the system (15) and (16) and
assume C is a stabilizing controller. Then the centroid
of the formation, (17), moves at the constant velocity
vref/n.

Proof. Observe from (1) that
(
1T
n ⊗ I2

)
R(x)T =(

1T
n ⊗ I2

)
(E ⊗ I2)diag(ei) = 0 due to the fact that

1n is the left null space of E. Using this property, we
examine the dynamics of the centroid,

˙̄x =
1

n

(
1T
n ⊗ I2

) (
−R(x)TC(δ) +Bvref

)
=

1

n

(
1T
n ⊗ I2

)
Bvref .

In the case that only one agent is being controlled (i.e.,
(1T
n ⊗ I2)B = I2), the centroid dynamics reduce to ˙̄x =

vref/n, concluding the proof.

Remark 1. Note that the centroid does not actually track
the reference velocity. However, if the number of agents
in the ensemble is known by the leader, this is easily
overcome by premultiplication of the reference velocity
by the number of agents in the network.

A proportional controller is a control loop feedback
mechanism widely used in industrial control systems,
and it is the first intuitive control gain that comes to
mind when implementing a controller. The P controller
is examined thoroughly in [17] and we summarize below
the main result.

Theorem 3 ( [17]). In the local sense, under Assumption
1, the error dynamics (14) is bounded input bounded out-
put (BIBO) stable. Furthermore, for a constant reference
velocity v, the steady-state error, δss, can be bounded as

‖δss‖ ≤
√
dmax · λn(L(G))

λ1(M(x∗))
‖v‖ ,

4
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where dmax is the largest entry of vector d defined in
Section III.

We now propose a proportional-integrator (PI) control
for the formation error controller C aimed at eliminating
the steady-state formation error when tracking a constant
velocity.

A. Proportional-Integral Control

A proportional controller generally operates with a
steady-state error, sometimes referred to as droop. Droop
may be mitigated by adding a compensating bias term
to the set point or output, or corrected dynamically by
adding an integral term. The next equation describes
a proportional-integrator controller that may be imple-
mented as the controller C in (16),

u(t) = −R(x)TκP (R(x)x(t)− d)−

R(x)TκI

ˆ T

0

(R(x)x(τ)− d) dτ, (18)

where κP and κI are scalar constants.
The integrator used in the controller introduces a new

state-variable into the system,

ζ̇ = κI (R(x)x(t)− d) , (19)

and by combining (15) with control law (18) the closed-
loop dynamics can be expressed as[
ẋ(t)

ζ̇(t)

]
=

[
−κPR(x)TR(x) −R(x)T

κIR(x) 0

] [
x(t)
ζ(t)

]
+

[
κPR(x)T

−κII

]
d+

[
B
0

]
vref . (20)

Examining the system from the error vector point of
view will be helpful when discussing the stability near
the origin. By a coordinate transformation as in (9), and
by using (20), the formation error dynamics are

[
δ̇(t)

ζ̇(t)

]
=

[
−2κPM(x) −2M(x)

κII 0

] [
δ(t)
ζ(t)

]
+

[
−2R(x)B

0

]
vref , (21)

where M(x) = R(x)R(x)T.

Theorem 4. Given that Assumption 1 holds, for any
kP , kI > 0, the origin of the zero-input (vref = 0)
error-dynamics in (21) is asymptotically stable.

Proof. By following a similar procedure as in Theorem
1, we note that for any x∗ ∈ Ω , δ is zero by definition,
which in turn leads to the equilibrium condition ζ = 0.

Hence, any x∗ ∈ Ω corresponds to an equilibrium point.
Denote

A(x) =

[
−2κPR(x)R(x)T −2R(x)R(x)T

κII 0

]
.

Linearizing around x = x∗ gives us the linearized
dynamics[

˙̃
δ(t)
˙̃
ζ(t)

]
=

[
−2κPM(x∗) −2M(x∗)

κII 0

] [
δ̃(t)

ζ̃(t)

]
,

where M(x∗) = R(x∗)R(x∗)T as before.
By Assumption 1, M(x∗) is a symmetric positive-

definite matrix, and therefore all of its eigenvalues are
real and positive. Denote the eigenvalues of M(x∗) as
µi. In order to learn about the location of the eigenvalues
of A(x∗), we need to solve its characteristic equation.
The following lemma will be useful for the analysis.

Lemma 2. ( [21]) The determinant of a block matrix

A =

[
A11 A12

A21 A22

]
is given by the formula

|A| = |A22|
∣∣A11 −A12A

−1
22 A21

∣∣ . (22)

From Lemma 2, the characteristic polynomial of
A(x∗) is thus

|λI −A(x∗)| =
∣∣λ2I + (2κPλ+ 2κI)M(x∗)

∣∣
=

m∏
i=1

(
λ2 + (2κPλ+ 2κI)µi

)
.

where the second equality can be derived by using the
fact that M(x∗) is symmetric and thus also diagonaliz-
able. The ith eigenvalue of A(x) can be computed as

λi =
−2κPµi ±

√
4 (κPµi)

2 − 8κIµi

2
. (23)

Since µi > 0 is positive, it follows that κp must be
positive in order for the real part of λi to be in the
open left-half plane. Furthermore, for positive κI , all the
eigenvalues must also be in the left-half plane. Therefore,
for any κp, κI > 0, by Lyapunov’s indirect method, we
conclude that the zero-input (vref = 0) error-dynamics
in (21) is asymptotically stable at the equilibrium point
δ = 0,ζ = 0.

Observe that in the context of Figure 2, the velocity
reference command can be viewed as a disturbance
entering the closed-loop system. It is well known that
the PI control scheme is able to reject slowly varying
disturbances ensuring that formation error asymptotically
converges to the origin, as desired. Furthermore, from
Theorem 2, it is also verified that the formation will

5
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(a) An MIR formation tracking a leader
with a PI controller.
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(b) The steady-state error ‖δ(t)‖
asymptotically converges to 0.

Fig. 3: PI Formation control with velocity reference.

move at a constant (i.e., bounded) velocity. Thus, the PI
control scheme is able to ensure zero steady-state error
of the formation while tracking the velocity command
of the leader.

V. SIMULATIONS

We now demonstrate the results of Theorem 4 with a
numerical example. Consider a group of 6 mobile agents
implementing the PI formation controller (20). A single
leader is injected with a reference velocity forming a
circle. The resulting trajectories are shown in Figure
3(a); the initial positions are depicted in grey and the
leader is labeled by the green node. A value of κP = 2
and κI = 3 were used for the control. As shown in
Figure 3(b), the PI controller leads to a zero steady-state
error for the formation.

VI. CONCLUSION

In order to solve the formation tracking problem of
a multi-agent system, we augmented a distance-based
rigidity control law with a PI controller on the formation
error. We demonstrated that the stability of the distance
error dynamics can be proven using Lyapunov’s indirect
method, and that the centroid of the formation moves at
a speed proportional to the reference velocity.
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