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Abstract—This paper is concerned with formation control
problems of multi-robot systems in framework of model pre-
dictive control. The formation control of robots herein is based
on the leader-follower scheme. The followers are controlled by
torques to track the desired trajectories to form and keep a
formation. A model predictive control approach is proposed for
solving the formation control problem, where the control problem
is formulated as a dynamic quadratic optimization problem. A
one-layer recurrent neural network called the simplified dual
network is applied for computing the optimal control input in
real time. Simulation results substantiate that the formation of
robots can be well controlled by the proposed approach.

I. INTRODUCTION

Formation control is an important issue for a group of robot-

s. In many complicated tasks such as searching and rescuing

operations, moving in formation offers many advantages such

as reduced cost, increased flexibility, and improved robustness.

In recent years, formation control has become a research

focus. There are several methods for formation control such

as leader-follower strategy [1-2], behavior based strategy [3-

4], virtual structure strategy [5-6], graph theory based strategy

[7-10], synchronization control strategy [11] and so on. The

most popular scheme is the leader-follower strategy due to its

implementability, scalability and reliability. In this work, the

leader-follower strategy is considered for the formation control

of a multi-agents system.

Much of the early formation control research based on the

leader-follower strategy only considered the kinematic model

where the formation is controlled by linear and angle velocities

[12-16]. Formation control based on kinematic models needs

strong assumptions on perfect velocity tracking to achieve

the desired formation with convergent errors. In practice,

the dynamics should be considered to guarantee the robots

can move with the desired velocities. Some research studied

formation control based on dynamic models. For example,

in [17], the dynamics of followers are modeled by a neural

network. In [18], a decentralized approach is proposed based

on virtual points, potential functions and the individual robots

abilities. In [19], a centralized scheme is proposed where a PD
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controller is developed . In [20], a dynamic formation control

approach is presented using on the leader-follower strategy. It

is shown that the dynamics of leaders are important for the

followers [21].

In recent research, neural network control and adaptive

control are widely studied for the formation control of multi-

robot systems. In [22], a neural network output feedback

control scheme is developed where neural networks are applied

for learning the dynamics of followers and the formation. In

addition, a neural network observer is introduced to estimate

the linear and angular velocities of the follower and its leader.

In [23], a leader-follower based adaptive formation control

method is proposed with limited information. An adaptive

observer is developed to estimate the velocity information and

uncertainties. Then an adaptive control law is derived using

dynamic surface control design procedures.

Despite of the recent progress, some issues remain unad-

dressed. First, many algorithms rely on the linear velocities

and angular velocities of the leader [21], [24]. However, the

velocity information is not easily obtained. Formation control

based on position information would be more preferred in

practice [25]. Secondly, some formation control algorithms are

too complex to be applied for real-world applications [22]. A

simple and valid control algorithm is always desirable.

In this paper, formation control of multi-robot systems

is studied based on the leader-follower scheme. The leader

position is the only information utilized for formation control.

Meanwhile, the kinematics and dynamics are both considered.

The control inputs are the torques of followers. To move in

and keep the desired formation, a model predictive control

approach is proposed where the formation control problem is

formulated as a sequential quadratic programming. A recurrent

neural network called he simplified dual network is applied for

solving the quadratic programming in real time.

The rest of this paper is organized as follows. In Section

II, preliminaries on the robot dynamics and formation control

are described. In Section III, the neural network based model

predictive control scheme is proposed. In section IV, the

simulation results are presented and discussed. Finally, Section

V concludes this paper.

II. PRELIMINARIES

A. Formation Control

Cooperation is an essential character of a multi-agent

system. A certain formation should be maintained when a

multi-agents system implements a cooperative work. In this
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paper, the formation control is considered based on the leader-

follower approach where one agent is selected as the leader

and others are the followers. To maintain the formation, each

follower needs to maintain the relative position with respect to

the leader. There are two types of control schemes to maintain

the relative position. The first one is based on the desired

distance and desired angle between the leader and the follower.

The second one is based on desired distance between each

agent pairs. We choose the first control scheme herein, as

shown in Fig. 1.

X

Y

v

Ɵ

w

(xj,yj)

(xi,yi)

Lij Leader i

Follower j

Fig. 1. Leader-follower formation

A follower is denoted with a subscript j, whereas the

leader is denoted with the subscript i. In Fig. 1, Lij and Ψij

are respectively the distance and angle between leader i and

follower j. Given the desired distance Ldij and angle Ψdij ,

proper velocities can be found to keep the formation of a multi-

agents system. The objective of the formation control can be

described as follows:

lim
t→∞

(Ldij − Lij) = 0,

lim
t→∞

(Ψdij −Ψij) = 0.
(1)

In other words, the distance and angle between follower and

leader are convergent to the desired values.

It is assumed that the real-time coordinates of the leader can

be obtained by each follower. Each follower tracks a trajectory

based on the desired distance and angle.

B. Robot Dynamics

A robot can be modeled by its features of kinematics and

kinetics. The kinematics describe the relation between its

position and velocity. The kinetics describe the relationships

between velocity and torque.

The kinematics equation for the jth robot can be written as:

q̇j = Jj(qj)vj (2)

where qj = [xj , yj , ψj ]
T

is the position vector of the robot,

xj and yj are the position coordinates, ψj is the angle of the

robot; vj = [uj , θj ]
T

is the velocity vector, uj and θj are the

linear velocity and angle velocity respectively, and

Jj(qj) =





cosψj 0

sinψj 0

0 1



 . (3)

Then, the kinematics feature can be described as:

ẋj = uj cosψj ,

ẏj = uj sinψj ,

ψ̇j = θj .

(4)

The kinetics equation for the jth robot can be written as [26]:

v̇j = fjτj (5)

where

τj =

[

τjr
τjl

]

, (6)

τjr and τjl are the torque of the right and left wheel respec-

tively, and f = (STMS)−1STE where

S =





cosψ 0
sinψ 0
0 1





M =





m 0 0
0 m 0
0 0 IZ





E =





cosψj/r cosψ/r
sinψ/r sinψ/r
b/r −b/r





M is the mass of the robot, r is the radius of the robot’s

wheels, b is half the distance between two wheels, and Iz is

the moment of inertia of the robot about its center of mass.

Finally, the kinetics feature can be described as:

u̇i =
τr

mr
+

τl

mr
,

ṙi =
bτr

rIZ
−

bτl

rIZ
. (7)

III. CONTROL STRATEGIES

A. Model prediction control

Consider a discrete-time nonlinear system as follows:

x(k + 1) = f(x(k)) + g(x(k))u(k)
y(k) = Cx(k).

(8)

The nonlinear system (8) is subject to the following con-

straints:
umin ≤ u(k) ≤ umax,

∆umin ≤ ∆u(k) ≤ ∆umax,

ymin ≤ y(k) ≤ ymax,

where x(k) ∈ ℜ

n is the state vector, u(k) ∈ ℜ

m is the input

vector, y(k) ∈ ℜ

p is the output vector, f(·), g(·) are nonlinear

functions, and umin ≤ umax, ∆umin ≤ ∆umax, ymin ≤ ymax

are vectors of lower and upper bounds.
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MPC is an iterative optimization technique: at each sam-

pling time k, measure or estimate the current state, and then

obtain the optimal input vector by solving an optimization

problem. At each interactive control step, the following cost

function can be used:

J(k) =
N
∑

j=1

‖r(k + j)− y(k + j |k )‖
2
Q

+
Nu−1
∑

j=1

‖∆u(k + j |k )‖
2
R,

(9)

where r(k+j) denotes the reference trajectory of output signal,

y(k + j |k ) denotes the predicted output, and ∆u(k + j |k )
denotes the input increment, and ∆u(k + j |k ) = u(k +
j|k)−u(k+j−1|k). N and Nu are prediction horizon (1 ≤ N)
and control horizon (0 < Nu < N), respectively. Q and R

are appropriate weighting matrices. ‖·‖denotes the Euclidean

norm of the corresponding vector. It can be obtained according

to the model (8)

x(k + 1|k) =f(x(k|k − 1)) + g(x(k|k − 1))(u(k − 1)

+ ∆u(k|k)),

x(k + 2|k) =f(x(k + 1|k − 1)) + g(x(k + 1|k − 1))

(u(k − 1) + ∆u(k|k) + ∆u(k + 1|k)),

...

x(k +N |k) =f(x(k +N − 1|k − 1)) + g(x(k +N − 1|

k − 1))(u(k − 1) + ∆u(k|k) + . . .+

∆u(k +Nu − 1|k)).

Define the following vectors:

r̄(k) = [r(k + 1) · · · r(k +N)]
T
,

ȳ(k) = [y(k + 1 |k ) · · · y(k +N |k )]
T
,

ū(k) = [u(k |k ) · · ·u(k +Nu − 1 |k )]
T
,

x̄(k) = [x(k + 1 |k ) · · ·x(k +N |k )]
T
,

∆ū(k) = [∆u(k |k ) · · ·∆u(k +Nu − 1 |k )]
T
, (10)

where r̄(k) is known in advance. The predicted output ȳ(k)
is then expressed in the following form:

ȳ(k) = C̃x̄(k) = C̃(G∆ū(k) + f̃ + g̃) (11)

where

C̃ =







C . . . 0
...

. . .
...

0 . . . C






∈ ℜ

Np×Nn,

G =









g(x(k|k − 1)) . . . 0
g(x(k + 1|k − 1)) . . . 0

...
. . .

...
g(x(k +N − 1|k − 1)) . . . g(x(k +N − 1|k − 1))









∈ ℜ

Nn×Num
,

f̃ =











f(x(k|k − 1))
f(x(k + 1|k − 1))

...

f(x(k +N − 1|k − 1))











∈ ℜ

Nn,

g̃ =











g(x(k|k − 1))u(k − 1)
g(x(k + 1|k − 1))u(k − 1)

...

g(x(k +N − 1|k − 1))u(k − 1)











∈ ℜ

Nn.

Hence, the original optimization problem (9) becomes:

min
∥

∥

∥r̄(k)− C̃f̃ − C̃g̃ − C̃G∆ū(k)
∥

∥

∥

2

Q
+ ‖∆ū(k)‖

2
R (12)

s.t. ūmin ≤ ū(k − 1) + Ĩ∆u(k) ≤ ūmax

∆ūmin ≤ ∆ū(k) ≤ ∆ūmax

ȳmin ≤ C̃f̃ + C̃g̃ + C̃G∆ū(k) ≤ ȳmax

where

Ĩ =











I 0 · · · 0

I I · · · 0
...

...
. . .

...

I I · · · I











∈ RNum×Num.

By defining v = ∆ū(k), problem (12) can be rewritten as a

quadratic programming (QP) problem:

min 1
2v

TWu+ cT v

s.t. l ≤ Eu ≤ h
(13)

where the coefficients are:

W = 2(GT C̃TQC̃G+R) ∈ ℜ

Num×Num,

c = −2GT C̃TQ(r̄(k)− C̃g̃ − C̃f̃) ∈ ℜ

Num,

E =
[

−Ĩ Ĩ − C̃G C̃G I
]T

∈ ℜ

(3Num+2Np)×Num,

b =









−ūmin + ū(k − 1)
ūmax − ū(k − 1)

−ȳmin + C̃f̃ + C̃g̃

ȳmax − C̃f̃ − C̃g̃









∈ ℜ

2Num+2Np,

l =

[

−∞

∆ūmin

]

∈ ℜ

3Num+2Np,

h =

[

b

∆ūmax

]

∈ ℜ

3Num+2Np.

The solution to the QP problem (13) gives the vector of control

action ∆ū(k) whose first element can be used to calculate the

optimal control input.
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B. Simplified dual neural network

In recent years, various neural network models have been

developed as goal-seeking solvers for QP problems, e.g. [27-

31]. The essence of neural computation lies in its parallel and

distributed information processing. In particular, the simplified

dual network developed in [27] showed superior performances

in MPC applications [33]. This neural network model is

applied for solving (13), whose dynamic equations can be

described as:

State equation

ε
dz

dt
= −Ev + h(Ev − z).

Output equation

v =W−1(ET z − c). (14)

where z is the state vector, v is the output vector and h is an

activation function defined as

h(xi) =







li, xi < li;
xi, li ≤ xi ≤ hi;
hi, xi > hi.

(15)

The simplified dual network has a single-layer structure with

totally 3Num+ 2Np neurons. According to the convergence

analysis in [27], it is Lyapunov stable and globally convergent

to the optimal solution of any strictly convex QP problem.

C. Overall MPC scheme

The MPC scheme for formation control of multi-robot

systems based on the simplified dual network is summarized

as follows:

1) Let k=1. Set control time terminal T , prediction hori-

zon N , Control horizon Nu, sample period t, weight

matrices Q and R.

2) Calculate process model matrices G, f̃ ,g̃, C̃ and neural

network matrices W , c, E.

3) Solve the convex quadratic minimization problem (13)

by using the simplified dual neural network to obtain

the optimal control action ∆uk.

4) Calculate the optimal input vector ū(k) and implement

the first element u(k |k ).
5) If k < T , set k = k+1, go to step 2;otherwise end.

IV. SIMULATION RESULTS

In this section, simulation results on an example are pre-

sented to validate the method. The discrete-time state space

equation of the controlled system is












xj(k + 1)
yj(k + 1)
ψj(k + 1)
uj(k + 1)
θj(k + 1)













=













0 0 0 cosψj(k) 0
0 0 0 sinψj(k) 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

























xj(k)
yj(k)
ψj(k)
uj(k)
θj(k)













+h













0 0
0 0
0 0
1

mr
1

mr
b

rIZ
−

b
rIZ













[

τjr(k)
τjl(k)

]

.

In the simulation, we assume that the formation consists of

one leader and two followers. The leader and followers have

the same mass and size. The mass is m = 2kg , the radius of

the robot’s wheels r = 0.05m, half of the distance between

two wheels b = 0.05m, the sampling time is h = 0.05s and

mass moment of inertia IZ=1.

The desired trajectory of the leader is composed of a straight

section and a section of quadratic curve. We also assume the

leader velocity along the x-axis is 1 m/s. So in the second

section, the linear velocity is accelerated.

The desired formation information and MPC parameters are

shown in TABLE I. Simulation results are shown in Figs.

2-6. Fig. 2 demonstrates the formation trajectories. Fig. 3

and Fig. 4 show the variation of the torques of two wheels.

The torque values lie in a small range. For the right wheel

torque, τrl is in the range of [-0.1214, 0.1457], τr1 is in

the range of [−0.1288, 0.2282], and τr2 is in the range of

[−0.0891, 0.1780]. For the left wheel torque, τrl is in the range

of [−0.1210, 0.1460], τr1 is in the range of [−0.0616, 0.1361],
and τr2 is in the range of [−0.1266, 0.1710]. Fig. 5 and Fig.

6 show the angular velocities and the linear velocities of the

robots. Because of the accelerated moving in the tangential

direction, the linear velocities are gradually increased. The

angular velocities tend to a stable range. For the angular

velocities, w1 is in the range of [0.018, 0.0125], w1 is in

the range of [0.0019, 0.0297] and w2 is in the range of

[0.0019, 0293].

TABLE I
RELEVANT PARAMETERS

Parameter VALUE Representation

Ld1 2.1m Distance between leader and follower 1

Ψd1 16.7o Angle between leader and follower 1

Ld2 2.1m Distance between leader and follower 2

Ψd2 163.3o Angle between leader and follower 2

N 5 Prediction horizon

Nu 5 Control horizon

Q Diag(100,500,0.1) Weighting matrix

R 0.1I Weighting matrix

V. CONCLUSION

This paper presents a neural network based model predictive

control approach to formation control of multi-robot systems.

Position of the leader is assumed to be available for each

follower. The formation control problem is formulated as a

sequential quadratic programming in MPC framework. The

simplified dual network is applied for solving the quadratic

programming in real-time. Simulation results show that the

robots formation can be well controlled by using the proposed

control method. Further works aim at solving formation con-

trol problems using local information only.
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