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Abstract: This paper presents a model of a three-wheeled omnidirectional robot including
a static friction model. Besides the modeling is presented a practical approach in order to
estimate the coefficients of coulomb and viscous friction, which used sensory information about
force and velocity of the robot’s center of mass. The proposed model model has the voltages
of the motors as inputs and the linear and angular velocities of the robot as outputs. Actual
results and simulation with the estimated model are compared to demonstrate the performance
of the proposed modeling.
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1. INTRODUCTION

The robotic platforms resulting from attaching omnidirec-
tional wheels to a chassis are called holonomic because,
the resulting vehicle can drive a path with independent
orientation and X-Y motion or the controllable degrees
of freedom is equal to the total degrees of freedom then
the robot. Omnidirectional wheels roll forward like normal
wheels, but slide sideways with no friction (or very little
friction). This differs from a traditional Ackerman-steered
vehicle or a tracked vehicle that must use skid-steering.

An omnidirectional robot is able to perform movements in
any direction without the need to reorient, allowing more
mobility and increasing the robot’s degree of freedom.
This feature is achieved by controlling the omnidirectional
wheels, combining their vectorial forces and velocities
(Conceicao et al., 2009). For a dynamic and kinematic
model of the robot, it is necessary to consider magnitudes
like speed, acceleration and strength that is provided by
the actuators, whereas the energy put into the system
discussed in (C.C. de Wit and Bastin, 1997).

From the studies on the dynamics and kinematics involved
in the movement of the omnidirectional robot, it is possible
to develop a model that approximates the reality. For
the modeling of estimation of coefficients of friction it is
necessary to analyze the models of static and dynamic
friction. The classical models of friction are composed of
different components and aspects of the frictional force.
The main idea is that friction opposes its magnitude
motion and it is independent of the speed of the contact
area (Hess and Soom, 1990). As an example of static model
there is Coulumb’s friction model, usually combined with
viscous friction model for a better fit of the experimental
data, see ((Baril, 1993); (Friedland and Park, 1992)). The
Karnopp model is used to detect zero speed (Karnopp,
1985).

Dynamic models have been of great interest due to ad-
vances in hardware that allows the implementation of
friction compensators. The Dahl model (Dahl, 1976) was
introduced in order to simulate the control systems with
friction, see (Astrom, 1998). The Lugre model is presented
in (Canudas de Wit et al., 1995) and its analysis and
modeling are made by the elastic bristles found in (Olsson,
1996), known to be popular in the time domain, and its
control and simulation friction are due to its simplicity and
integration of pre-slip and slip systems.

This paper presents a dynamic model of an omnidirec-
tional mobile robot that considers the coulomb and viscous
friction in the composition of forces of the robot’s center
of mass. To estimate the coefficients of friction, an experi-
mental method that uses sensory information of force and
velocity of the robot’s center of mass is used. This method,
proposed in (Conceicao et al., 2009) for a four-wheeled
robot, is now tested in a three-omnidirectional-wheeled
robot. An analysis of model behavior in different operating
situations, including the dead zone effects, is presented.

The paper is organized as follows. In section 2, the model
of an omnidirectional-wheeled robot is presented and a
state space representation is proposed. Section 3 presents
a parameters estimation of the friction coefficients of the
model. In section 4, current results achieved by the model
are discussed, addressing the advantages and disadvan-
tages. The final considerations are presented in section 5.

2. MODELING

2.1 Kinematics of the robot

By geometric parameters of the robot and the robot’s body
frame, in Figure 1(a), the motion equations are as follows:

ξ̇ = RT (θ)ξ̇r (1)
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where an orthogonal rotation matrix R(θ) is defined to
map the world frame into the robot frame, and vice versa:

R(θ) =

[
cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

]
(2)

The robot pose is fully described by the vector: ξ =
[xr yr θ]T , where xr and yr is the localization of the
point P in the world frame, and θ the angular difference
between the world and robot frames. ξ̇r = [v vn w]T is the
velocity vector at the robot frame and describes the linear
velocity of the robot at the point P , represented by the
orthogonal components v and vn, and the angular velocity
of the robot’s body, represented by w.

The relationships between robot velocities (v, vn and w)
and wheel’s angular velocities (wmi

, for i = 1, ..., 3) are
given by:
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with b the distance between the point P and robot’s
wheels, ri the radius of each wheel i, and the angle δ equal
to 30 degrees.

2.2 Dynamics of the robot

The omnidirectional mobile robot model is developed
based on the dynamics, kinematics and dynamics of DC
motors of the robot. By Newton’s law of motion and the
robot’s body frame, in Figure 1(a), the dynamic model is
described by

Fv(t) −Bvv(t) − Cvsgn(v(t)) =M
dv(t)

dt
, (4)

Fvn(t) −Bvnvn(t) − Cvnsgn(vn(t)) =M
dvn(t)

dt
, (5)

Γ(t) −Bww(t) − Cwsgn(w(t)) = In
dw(t)

dt
, (6)

where,

sgn(α) =

{
1, α > 0,
0, α = 0,
−1, α < 0.

F = [Fv Fvn Γ]T represents the vector force (Fv and
Fvn) in the robot frame and the moment (Γ) around the
center of gravity for the mobile robot (point P ). The
robot mass is M and the robot inertia moment is In. The
viscous frictions (Bvv(t), Bvnvn(t) and Bww(t)) represent
a retarding force, which is a linear relationship between
the applied force and the velocity. The coulomb frictions
(Cvsgn(v(t)), Cvnsgn(vn(t)) and Cwsgn(w(t))) represent
a retarding force that has constant amplitude with respect
to the change of velocity, but the sign changes with the
reversal of the direction of velocity, (Kuo, 1995). Bv, Bvn
and Bw are the viscous friction coefficients related to v,
vn and w respectivelly, and Cv, Cvn and Cw the coulomb
friction coefficients.

The relationships between the robot’s traction forces and
the wheel’s traction forces are,

Fv(t) = cos(δ)(f2(t) − f3(t)) (7)

Fvn(t) = −f1(t) + sen(δ)f2(t) + sen(δ)f3(t) (8)

Γ(t) = (f1(t) + f2(t) + f3(t))b. (9)

The wheel’s traction force on each wheel i (for i = 1, ..., 3)
is

fi(t) =
Ti(t)

ri
. (10)

with Ti the rotation torque of the wheels.

The dynamics of each DC motor i (for i = 1, ..., 3) can be
described using the following equations,

ui(t) =Lai
diai(t)

dt
+Raiiai(t) +Kviwmi

(t), (11)

Ti(t) = liKtiiai(t), 0 ≤ iai(t) ≤ imax (12)

where Lai are the motor’s armature inductance, Rai are
the motor’s armature resistance, li are the motor’s gear
ratio reduction, and wmi the angular velocity of the wheels.
The armature current is limited to save battery, where
imax(A) is a design parameter. The armature voltage is
u(t), with input signal constraints: −6(V olts) ≤ u(t) ≤
6(V olts) for t ≥ 0. In SI unit system, the values
of Kt (motor’s torque constant) and Kv (motor’s elec-
tromotive force constant) are identical, see Kuo (1995):
Kt(N.m/A) = Kv(V olts/(rad/sec)).

2.3 State Space Representation

In this subsection, the robot model in the state-variable
form is presented. By combining previously mentioned
equations, it is possible to show that model equations can
be rearranged into a variation of the state space that can
be described as

ẋ(t) = Ax(t) +Bu(t) +Ksgn(x(t)) (13)

y(t) = Cx(t) (14)

where the vector u(t) = [u1(t) u2(t) u3(t)]T is the input
and the vectors y(t) = x(t) = [v(t) vn(t) w(t)]T are the
output and the state-variables of the system. Considering
l = l1...3, r = r1...3, Ra = Ra1...3 and Kt = Kt1...3 ,
the simplified state-variable-form matrices defining this
system are

A =
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(a) Geometric parameters and reference frames. (b) Omnidirectional mobile robot.

Fig. 1. Wheeled Robot.

K =

 −
Cv

M
0 0

0 −
Cvn

M
0

0 0 −
Cω

In

 , C = I.

Analyzing (13), one can observe that the nonlinearity lies
in the Ksgn(x(t)) term.

3. ESTIMATION OF THE COEFFICIENTS OF
FRICTION

The method of estimation consists of applying velocities
v, vn and w in the robot, and measuring the traction
forces Fv, Fvn and the torque Γ, with the robot on steady-
state velocity. Because of a steady-state velocity (null
derivatives) and considering positive velocities, equations
(4 - 6) can be simplified:

Fv(t) =Bvv(t) + Cv (15)

Fvn(t) =Bvnvn(t) + Cvn (16)

Γ(t) =Bww(t) + Cw (17)

In this method, it is possible to estimate the viscous
(Bv, Bvn, Bw) and coulomb (Cv, Cvn, Cw) frictions. Table
1 shows the applied voltages (causing the robot velocities)
and the resulting velocities, forces and torques. The forces
and the torque can be calculated using the motor’s cur-
rents, see equations (7-12).

The effects of dead zones of the motors should be con-
sidered in conducting the experiments, as reflected in the
velocities of the robot’s center of mass. Thus, the lowest
applied voltages are close to the values on which the mobile
base starts moving. For example, the first line of Table 1
shows the voltages u = (0, 1.2, -1.2) applied to the motors
but the base is stopped, however for the voltages u = (0,
2, -2) the base is moving. The same happens for vn and w
velocities. Figure 2 presents some curves of velocities, and
their currents used to obtain the forces. It can be seen in
Figure 2(a) that applying the voltage of 3 volts on motor 2
and the voltage of -3 volts on motor 3 generated a velocity
of about 0.74 meters per second in the direction of velocity
v. The respective currents are shown in Figure 2(a). The

same analysis can be made for the other graphs in Figure
2.

ui v Fv

(volts) (m/s) (N)
0 ;1.2;-1.2 0 2.25

0;2;-2 0.37 2.48
0;3;-3 0.74 2.79
0;4;-4 1.08 3.28

ui vn Fvn

(volts) (m/s) (N)
-1.5;0.75;0.75 0 1.47

-3;1.5;1.5 0.42 1.97
-4;2;2 0.75 2.33

-5;2.5;2.5 1.08 2.49

ui w Γ
(volts) (rad/s) (N.m)

0.25;0.25;0.25 0 0.10
1.5;1.5;1.5 5.84 0.14

2;2;2 8.04 0.18
2.5;2.5;2.5 10.02 0.21

Table 1. Values of voltages, velocities, forces
and torques.

As the values of the velocities and forces are known, the
frictions coefficients may be estimated. The least-squares
line method was used to approximate the set of data to
a linear model (equation of the straight line). Figure 3
shows the applied velocity, resulting force, and the best
fitting line. The resulting equations with the estimated
coefficients are presented in Table 2. The robot mass was
balanced, while for the moment of inertia of the robot was
used the moment of inertia of a cylinder with the same
mass and dimensions of radius and height of the robot.

Equations Bv ,Bvn Cv ,Cvn

Bw Cw

v Fv(t) = 0.94v(t) + 2.2 0.94 2.2
vn Fvn(t) = 0.96vn(t) + 1.5 0.96 1.5
w Γ(t) = 0.01w(t) + 0.099 0.01 0.099

Table 2. Equations and coefficients.

Summarizing, the parameters of the motors, geometric
parameters and estimated parameters are presented in
Table 3.
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(a) u = (0, 3,−3). (b) u = (−4, 2, 2). (c) u = (1.5, 1.5, 1.5).

(d) ia1 , ia2 , ia3 . (e) ia1 , ia2 , ia3 . (f) ia1 , ia2 , ia3 .

Fig. 2. Velocities and Currents.

(a) Fv versus v. (b) Fvn versus vn. (c) Γ versus w.

Fig. 3. Relation between forces and torque with velocity.

Table 3. Parameters of the model.

Simbol Description Values
Bv(N/m/s) viscous friction coefficient related to v 0.94

Bvn (N/m/s) viscous friction coefficient related to vn 0.96

Bω(N/rad/s) viscous friction coefficient related to ω 0.01

Cv(N) coulomb friction coefficient related to v 2.2

Cvn (N) coulomb friction coefficient related to vn 1.5

Cω(N.m) coulomb friction coefficient related to ω 0.099

b(m) radius of the robot 0.1

M(kg) mass of the robot 1.5

In(kg.m2) inertia moment of the robot 0.025

δ angle 30o

r1, r2, r3(m) radius of the wheels 0.035

l1, l2, l3 reduction of the motors 19:1

La1...3 (H) motor’s armature inductance 0.00011

Ra1...3
(Ω) motor’s armature resistance 1.69

Kv1...3
(V olts/rad/s) motor’s emf constant 0.0059

Kt1...3 (N.m/A) motor’s torque constant 0.0059

4. ANALYSIS OF THE MODEL

This section presents results to verify the behavior of the
estimated model and compare it with real results of the
robot. The model has the voltage of the motors as inputs
and velocity of the robot’s center of mass as outputs.
Experiments were carried out by applying voltages on
motors and in the model, as shown in Table 4. For example,

while applying zero volt in motor 1, 2 volts in motor 2 and
-2 volts in motor 3, the velocity of the robot is in the
direction of vector v.

The results of simulation and the robot velocities are
shown in Figure 4. The model gives a good representation
of the robot state. For cases in which the robot has
velocities v and vn, the presence of noise is bigger when

IFAC SYROCO 2012
September 5-7, 2012. Dubrovnik, Croatia

10



compared with the velocities w. This is easily explained
by the geometry of the robot, which to generate velocities
in the v direction only two of the three motors are active,
in addition the wheels have an angle of 30 degrees related
to velocity vector v (see Figure 1(b)). In the case of w,
the three motors are active simultaneously in the same
direction and with the same input voltage, making less
noise. It is important to say that, in open loop experiments,
any undulation in the floor would cause a small difference
in the transient and steady state responses.

The model considers the effect of static friction and there-
fore the open loop response should represent the dead
zone. To verify this effect, experiments were performed
as shown in Figure 5. For the velocities v, Figure 5(a),
the model represented accurately the effect of dead zone
compared with the robot. For velocities w, Figure 5(b),
the model also achieved a good performance. For v and
vn the necessary voltages for the robot start to move are
bigger (around 1 volt) due to the presence of a larger static
friction caused by the geometry of the mobile base. To
overcome this inertia in w, the necessary voltage is around
0.3 volts.

Velocity v
Motor 1 Motor 2 Motor 3
u1(volts) u2(volts) u3(volts)

0 2 -2
0 3 -3
0 4 -4

Velocity vn
Motor 1 Motor 2 Motor 3
u1(volts) u2(volts) u3(volts)

-2 1 1
-3 1.5 1.5
-4 2 2

Velocity w
Motor 1 Motor 2 Motor 3
u1(volts) u2(volts) u3(volts)

2 2 2
3 3 3
4 4 4

Table 4. Applied voltages.

5. CONCLUSION

In this paper, a mobile robot modeling including coulomb
and viscous friction in the composition of the robot forces
has been proposed. This is a simplified friction model when
compared to existing models in the literature (for example,
Lugre and Dahl). The model showed a good agreement
with real data and with the mapping of the dead zone
effects. We can see an acceptable difference between the
estimated values, taking into account that the measured
values of currents and velocities have a considerable noise,
and any irregularity in the floor can cause alterations in
parameters of the robot. A practical approach to estimate
the coefficients of friction was used, based on sensory infor-
mation from the motor current and the robot speed, easily
applicable in any configuration of vehicle which provides
these logs. Finally, a model that represents non-linear
elements are essential to controllers design, especially when
the robot is subjected to different operating conditions
such as uneven terrain or the transportation of different
loads, which require maximum forces of the actuators.

An example of control application can be seen in Araújo
et al. (2011), where a methodology for state feedback
MPC (Model Predictive Control) synthesis applied to the
trajectory tracking control problem was proposed. In the
referred work, the model used in this work was used to
predict the future robot positions and orientations and
takes into account elements such as saturation and friction.
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(a) Inputs u: (0; 2;-2), (0; 3; -3) e (0;4; -4). (b) Inputs u: (-2;1;1), (-3;1.5;1.5) e (-4;2;2).

(c) Inputs u: (2;2;2), (3;3;3) e (4;4;4).

Fig. 4. Real and simulation results.

(a) Velocity v. (b) Velocity w.

Fig. 5. Dead-zone effect.
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