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Abstract— This paper considers the formation control prob-
lem for autonomous robots, where the target formation is
specified as a minimally rigid formation. A distributed control
law based on potential functions is derived from a directed
sensor graph and relies on the graph matrices only. By methods
of inverse optimality a certain class of sensor graphs is identified
that is related to a cooperative behavior among the robots.
These graphs are referred to as cooperative graphs, and
undirected graphs, directed cycles, and directed open chain
graphs can be identified as such graphs. Cooperative graphs
admit a local stability result of the target formation together
with a guaranteed region of attraction, that depends on the
rigidity properties of the formation.

I. INTRODUCTION

The control of a network of autonomous mobile robots

is an interesting instance of distributed control. This paper

contributes to formation control, that is, getting autonomous

mobile robots into a formation when each robot has only

locally sensed information about the others.

In this problem graph theory plays a natural role, both to

define a formation and to describe the sensor relationships–

who can “see” whom. Early work used the graph theoretic

concept of rigidity [1], [2]. Rigidity was first introduced as

a design tool to construct undirected graphs, but more recent

references extend the rigidity concept to directed graphs [3]

and employ it as an analysis tool for the stability of an

undirected formation [4]. For an overview of the applications

of rigidity in formation control, see [5].

Typically a potential function approach is used in the

formation control problem [2], [6], [4], [7]. Other approaches

first construct distributed control laws and then later relate

them to potential functions [8], [9], [10], [11]. Historically

the idea of potential functions emerged for undirected graphs,

but has recently been extended to directed graphs [4]. A

typical stability analysis of the desired formation usually

makes use of the potential function as a Lyapunov function

in combination with the invariance principle, that usually

does not guarantee convergence of the robots to a particular

geometric configuration. Reference [4] specifies the desired

formation as an infinitesimally rigid framework and proves

its stability by methods of linearization and center manifold

theory and making use of infinitesimal rigidity.

We follow the approach of [4], specifying a minimally

rigid target formation and deriving a potential function based
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control law for a general directed sensor graph. Although

the control laws are designed for each robot independently,

for certain graphs the resulting closed-loop dynamics reflect

a cooperative behavior among the robots. This becomes

obvious for undirected graphs, where the overall dynamics

can be related to an optimal control problem based on rigidity

and the target formation, but also for certain directed graphs

where the multi-robot system shows the same behavior.

This cooperative behavior combined with the infinitesimal

rigidity of the target formation then directly paves the way

for our stability analysis. Compared to [4], which has an

infinitesimal result, we pursue a Lyapunov-type analysis in

the space of inter-agent distances leading to an exponential

stability result with a guaranteed region of attraction.

The paper is organized as follows: In Section II some

graph theoretic preliminaries are given and the formation

control problem is specified. In Section III a potential func-

tion based control law is proposed and in Section IV the

cooperative behavior resulting from this control is specified.

A stability result is presented in Section V and finally some

some conclusions and an outlook are given in Section VI.

II. THE FORMATION CONTROL PROBLEM

A. Basic Notation and Definitions

A directed graph G = (V, E) consists of a finite set of

nodes V =
{

1, . . . , n
}

and edges E ⊂ V × V . We assume

the edges are ordered, that is, E =
{

1, . . . , m
}

, and exclude

the possibility of self loops—an edge from a node to itself.

The neighbour set Ni of the node i is the set of all nodes j
where there is an edge from i to j. In this case i is the source

node of the edge and j is the sink node; the edge is then also

called an outgoing edge of node i. With a directed graph

G we associate two different matrices. The matrix relating

the nodes to the edges is called the incidence matrix H =
{hij} ∈ R

m×n of the graph and is defined component-wise

as hij = 1 if node j is the sink node of edge i and as

hij = −1 if node j is the source node of edge i; all other

elements are zero. Let 1 denote the vector of 1’s. Then 1

lies in the kernel of H . Furthermore, rank (H) = n − 1 iff

G is connected ([12], Proposition 4.3) and thus in this case

Ker (H) = span {1}. For the remainder of this work we

will assume that all graphs are connected. In addition to the

incidence matrix, of interest for us is also the outgoing edge

matrix O = {oij} ∈ R
n×m with components oij = −1 if

node i has outgoing edge j and oij = 0 else.

We take an undirected graph to be a special case of a

directed graph, where, for every i, j, if there’s an edge from

i to j, there is also a reverse one from j to i. For such a graph

the edges can be ordered such that the edge set is partitioned

Proceedings of the European Control Conference 2009 • Budapest, Hungary, August 23–26, 2009 TuB4.1

2432© Copyright EUCA 2009
978-3-9524173-9-3



as E = {E+, E−}, where elements of E− have the opposite

orientation from the elements of E+. The incidence matrix is

then obtained as H =
[

HT
u ,−HT

u

]T
and the outgoing edge

matrix as O =
[

Ou, Ou − HT
u

]

, where Hu and Ou are the

incidence and outgoing edge matrix corresponding to E+.

B. Frameworks and Infinitesimal Rigidity

Rigidity is a property that refers to undirected graphs. Let

G = (V, E) be an undirected graph with n nodes and m
edges. We embed G into the plane R

2 by assigning to each

node i a point zi ∈ R
2. A framework is then a pair (G, z),

where1 z = (z1, . . . , zn) ∈ R
2n.

It is convenient to introduce the notation Â := A ⊗ I2,

where A is a matrix, I2 is the two dimensional identity

matrix, and ⊗ is the Kronecker product. In rigidity we

don’t want to count link lengths twice, so we define the

vector e = Ĥuz and partition it as e = (e1, . . . , em/2),
ei ∈ R

2. Thus e is the concatenated vector of links with

the orientation of the edges in E+. We define the rigidity

function rG : R
2n → R

m as

rG(z) =
1

2
(‖e1‖

2, . . . , ‖em‖2), (1)

where the norm is the standard Euclidean norm. The frame-

work (G, z) is then said to be rigid if there is an open

neighbourhood U of z such that, if q ∈ U and rG(z) = rG(q),
then (G, z) is congruent to (G, q).

Although rigidity is a very intuitive concept, its definition

does not provide a condition that is easy to check. Luckily

there is a linearized version of the concept that involves a

rank condition on the Jacobian ∂rG(z)/∂z ∈ R
m×2n, called

the rigidity matrix of the framework (G, z). A framework is

infinitesimally rigid if the rank of the rigidity matrix equals

2n − 3 (it can’t be more). If (G, z) is infinitesimally rigid,

so is (G, z′) for a generic (open and dense) set of z′. If a

framework is infinitesimally rigid, then it is also rigid but

the converse is not necessarily true. Finally, note that an

infinitesimally rigid framework must have at least 2n − 3
links. If it has exactly 2n−3 links, then we say it is minimally

rigid.

The links e obtained by the positions z as e = Ĥuz are not

independent, but are located in the space ImĤu, the image

(range space) of Ĥu, considered as a map; this space is called

the link space. It is a subspace of R
2n whose normal vectors

are in Ker
(

ĤT
u

)

and thus correspond to cycles in the graph

([12], Theorem 4.5). The rigidity function rG(z), that maps

the positions to the squared link lengths, then induces the

function v : ImĤu → R
m via

v(e) =
1

2
(‖e1‖

2, . . . , ‖em‖2).

Thus rG(z) = v(Ĥuz). Defining D(e) = diag(ek), we arrive

at the following simple form for the rigidity matrix:

∂rG(z)

∂z
=

∂v(e)

∂e

∂e

∂z
= D(e)T Ĥu =: RG(e). (2)

1Vectors are written either as n-tuples or columns vectors.

Infinitesimal rigidity is a property of a framework, but since

it obviously depends only on the links, we can equivalently

talk about the infinitesimal rigidity of a pair (G, e), which we

refer to as a formation, and to RG(e) as its rigidity matrix.

In the general case of a directed graph G, everything

carries over naturally: a framework (G, z) is defined in the

same way, and the equation relating e and z is e = Ĥz,

where H is the incidence matrix of the directed graph G.

The link space is thus again ImĤ and the pair (G, e) is

a formation. We say that the framework, respectively the

formation, resulting from a directed graph is infinitesimally,

respectively minimally, rigid if the corresponding undirected

framework is infinitesimally, respectively minimally, rigid.

C. Distributed Control of Autonomous Robots

For our purposes an autonomous robot is a wheeled, actu-

ated vehicle in the plane that has no communication devices

and is equipped with a compass and an onboard camera. The

camera is assumed to have no sensing limitations regarding

range and direction. By methods of feedback linearization

many standard models of wheeled robots can be transformed

to a kinematic point whose motion is fully actuated, that is,

it has dynamics żi = ui, where zi ∈ R
2 is the position

of robot i in the plane and ui ∈ R
2 is a direct velocity

command. Altogether we consider n such robots and with the

concatenated vectors z = (z1, . . . , zn) and u = (u1, . . . , un)
in R

2n the overall dynamics are simply ż = u.

The topology of information exchange between the robots

is expressed in the sensor graph G, a directed graph with n
nodes and m edges. Node i of the graph G corresponds to

robot i, and a directed edge from robot i to robot j ∈ Ni

means that robot i can sense robot j via its onboard camera.

Thus robot i can sense the relative distance and direction of

robot j in a global reference frame (due to the compass).

If we consider the concatenated vector e = (e1, . . . , em) ∈
R

2m and the incidence matrix H of the graph G, then the

links are obtained by e = Ĥz. Thus the sensor graph G and

the positions z define the framework (G, z) with the links e in

ImĤ . Suppose the robots should now perform certain tasks

in a distributed way. In such a distributed control approach

the control input ui of robot i depends exclusively on local

sensory information, which are the links ek = zj − zi with

j ∈ Ni. That is to say, ui = ui (ek), where k is an outgoing

edge of node i.

D. Problem Statement

Given the sensor graph G and a set of distance constraints

dk > 0, where k ∈ {1, . . . , m}, the desired formation is to

have ‖ek‖ = dk for all k. Ideally the robots should converge

to this formation from any starting point. If we define d ∈
R

m to be the vector with components d2
k/2, then the goal is

rG(z) = d and we refer to the set of frameworks
(

G, r−1
G (d)

)

as the target formation. References [1], [2] show that, in

order to guarantee cohesion of the target formation, it has

to be specified as an infinitesimally rigid formation, and the

recent reference [4] shows that infinitesimal rigidity of the

target formation is not only a necessary but in certain cases
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also a sufficient condition to stabilize the robots to the target

formation. Because of this and in order to minimize sensor

costs, we assume that the target formation is minimally rigid

for every z ∈ r−1
G (d). The formation control problem is

then to find a distributed control law u such that the robots

converge to a stationary formation where rG(z) = d. This

can also be formulated as a set stabilization problem:

Find a control law u such that each ui = ui(zj −
zi), j ∈ Ni, i.e., each control law can be im-

plemented by onboard sensing, z(t) converges as

t → ∞, and rG(limt z(t)) = d.

It is known that the goal rG(limt z(t)) = d cannot be

achieved for every initial position z(0), for example, the

references [8], [9], [10], [11], [13] show that three robots

obeying potential function based control laws cannot form a

triangle from an initially collinear position.

Remark 2.1: Reference [3] shows that in the directed

graph case a property called constraint consistence is also

a necessary graphical condition for the robots to attain a

formation. That’s why strictly speaking
(

G, r−1
G (d)

)

should

be specified as a minimally persistent (i.e., minimally rigid

and constraint consistent) formation. All graphs treated in

this paper are constraint consistent and that’s why we omit

this characterization.

III. A POTENTIAL FUNCTION BASED CONTROL LAW

We introduce the simple quadratic function T (ω) = ω2/8.

So T (ω) and its derivative are both 0 iff ω = 0. All the

following results in this paper can also be proved for more

general functions as proposed in [9], but we omit doing this

for the sake of simplicity; the reader is referred to [14].

For each robot a potential function is constructed that is

zero whenever the robot has the desired distance from its

neighbour and is positive otherwise. A potential function

can then be interpreted as a cost that each robot has to pay

for violating its distance constraints. For robot i we take

Wi : R
2n → R defined as

Wi(z) =
∑

k,oik �=0

T
(

‖ek‖
2 − d2

k

)

, (3)

where the summation is taken over all outgoing edges k of

node i. In order to minimize its cost, robot i should move in

the direction of the steepest descent of its potential function:

ui = −

[

∂

∂zi
Wi(z)

]T

=
1

2

∑

k,oik �=0

ek

(

‖ek‖
2 − d2

k

)

. (4)

In terms of the outgoing edge matrix O, the overall closed-

loop z-dynamics are then obtained as

ż = u = −ÔD(e)[v(e) − d]. (5)

The initial condition of the z-dynamics is the initial location

z(0) = z0 ∈ R
2n of the robots. The control law is illustrated

in Figure 1, where c : ImĤ → R
2m is defined as

c(e) = D(e)[v(e) − d]. (6)

Different approaches to the formation control problem

. . .

. . .

ż = u

. . .

. . .

C

ĤÔ

zu

ec(e)

−

z0

Fig. 1. Overall system’s closed-loop dynamics for a directed sensor graph

analyzing the z-dynamics in the state space R
2n have been

proposed [2], [4]. One obstacle is that the target formation

parametrized in the state space as Ez = {z : rG(z) = d} is

invariant under translations and rotations in the plane. Such

a set is non-compact, which complicates an analysis based

on differential geometry, set stability or invariance concepts.

In addition, the formation specification is in the link space.

Fortunately, the target formation parametrized in the link

space, Ee = {e : v(e) = d}, is compact.

For these obvious reasons we approach the formation

control problem as a set stability problem in the link space.

The closed-loop e-dynamics resulting from (5) are

ė = Ĥu = −ĤÔD(e)[v(e) − d]. (7)

Equation (7), together with the initial condition e(0) =
e0 = Ĥz0, defines a dynamical system evolving on the link

space ImĤ and will be simply called the link dynamics with

solution φ(t, e0). The target formation Ee is not the only

equilibrium set of the link dynamics, since the matrices Ô
and Ĥ have non-trivial kernels and we have the additional

term D(e). An intriguing approach to prove stability of Ee,

using the somewhat natural set-Lyapunov function candidate

V (e) =

m
∑

k=1

T
(

‖ek‖
2 − d2

k

)

, (8)

does not provide the desired result—quite the contrary, V (e)
in some cases even increases along trajectories of the link

dynamics. Thus stability of the target formation with respect

to the link dynamics is far from obvious.

Classically, the function V was used together with the

invariance principle in the undirected graph case [2], [6],

[7]. For undirected graphs we can express the z-dynamics in

terms of the links e = Ĥuz, that is, the links corresponding

to edges in E+, and the z-dynamics (5) simplify to

ż = u = −ĤT
u D(e) [v(e) − d] (9)

(see [14]). Equation (9) corresponds in Figure 1 simply to

an exchange of Ô with ĤT
u , similar to what is shown in [7].

Furthermore, note that the right-hand side of equation (9)

can be derived as the gradient control

ż = u = −

[

∂

∂z
V

(

Ĥuz
)

]T

. (10)

From (10) the link dynamics in the undirected graph case
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can then also be obtained from a gradient control law as

ė = Ĥu u = −Ĥu ĤT
u D(e) [v(e) − d] (11)

= −ĤuRG(e)T [v(e) − d] = −ĤuĤT
u

[

∂

∂e
V (e)

]T

. (12)

Note that the link dynamics (12) correspond to edges with

orientation defined in E+, and the links with the inverse

orientation defined in E− follow the same dynamics. The

gradient structure of the overall control law for undirected

sensor graphs strongly resembles the nonlinear control design

concept of inverse optimality [15] and can indeed be related

to an optimal control problem, as shown in the next section.

IV. INVERSE OPTIMALITY AND COOPERATIVE GRAPHS

Let us illuminate the closed-loop dynamics from a game

theoretic viewpoint. Each robot has its own individual strat-

egy that consists of minimizing its potential function Wi(z),
that is, optimizing all its outgoing links to the desired length.

On the other hand the robots do not follow a common

protocol. This leads to the fact that each robot follows its own

strategy regardless of what other non-neighbouring robots are

doing. A valid question to ask is whether or not the robots

indeed act cooperatively and achieve a common goal. If we

look at the example in Figure 2 it does not necessarily seem

so. Figure 2 shows two distinct robots that are embedded in

a larger network and are interconnected by a directed link e1

from robot 1 to robot 2. While the strategy of robot 1 is to

meet its distance constraint on the link e1, robot 2 follows

its own strategy, which does not involve link e1. In fact, the

overall graph could be set up such that robot 2 is moving

away from robot 1, as illustrated by the dashed line. Thus the

robots do not act in a way that we would call cooperative.

A. Inverse Optimality of an Undirected Setup

Intuitively such a scenario cannot happen in an undirected

graph, where for each link is also a reverse one. Loosely

speaking, this implies that the strategy of both robots involves

optimizing their distance to a desired length. Therefore,

robots interconnected in an undirected graph should alto-

gether pursue a common goal, that is, the overall system

should be inverse optimal with respect to a meaningful cost

functional. This is established by the following theorem.

Theorem 4.1: For an undirected graph the gradient control

law u = −ĤT
u [∂V (e)/∂e]

T
is an inverse optimal control

law that optimizes the cost functional

J(e0, u) =
1

2

∫ ∞

0

∥

∥RG(e)T [v(e) − d]
∥

∥

2
+ ‖u‖2

dτ (13)

s.t. ė = Ĥu u , e(0) = e0 ∈ Im Ĥu (14)

z2

z1

e1

Fig. 2. Robots do not necessarily act cooperatively

with the terminal set Ee. The value function corresponding to

the optimal control problem (the minimum cost-to-go starting

from e(t)) is, with V (e(t)) as defined in (8), given by
∫ ∞

t

∥

∥RG(e)T [v(e) − d]
∥

∥

2
dτ ≡ V (e(t)) (15)

Before we move on to the proof of Theorem 4.1, let

us discuss the implications of the optimality of the overall

strategy u. These become clear from the value function (15),

that describes the optimal cost-to-go from any e ∈ ImĤu at

time t and, interestingly enough, corresponds to V (e). Since

d/dtV (e) is given by the negative integrand of the functional

on the right-hand side of (15) and is clearly negative, V (e)
is bounded along trajectories of the link dynamics. But then

also the functional on the right-hand side of (15) is finite and

we conclude that the integrand itself converges to zero. This

again implies that the solution φ(t, e0) either converges to

a set where the rigidity matrix RG(e) has a permanent rank

loss or that φ(t, e0) → Ee. In the second case the terminal

condition is also satisfied, while it is not in the first one.

Hence, the robots either converge to the target formation,

which is the global minimum of V (e), or get stuck in a non-

rigid formation corresponding to a local minimum of V (e).
From the viewpoint of the infinite horizon optimal control

problem with terminal set Ee, these two cases correspond to

initial conditions from where the optimal control problem is

either feasible or not.

Proof of Theorem 4.1: We derive a solution to the opti-

mal control problem with cost functional (13) via dynamic

programming. The Hamilton-Jacobi-Bellman equation is

0 = min
u∈R2m

{

1

2
[v(e) − d]T RG(e)RG(e)T [v(e) − d]

+
1

2
uT u +

[

∂

∂e
Ṽ (e)

]

Ĥu u

}

, (16)

where Ṽ : Im Ĥu → R is the value function that fulfills the
boundary condition ([16], Section 10.23)

Ṽ (e) = 0 ⇔ e ∈ Ee . (17)

The control input u∗ minimizing the right-hand side of (16)

is then given by u∗ = −ĤT
u [∂Ṽ (e)/∂e]T . Plugging u∗ back

into (16) gives the PDE

0 = [v(e) − d]T RG(e)RG(e)T [v(e) − d]

−

[

∂

∂e
Ṽ (e)

]

Ĥu ĤT
u

[

∂

∂e
Ṽ (e)

]T

. (18)

An intriguing solution for Ṽ (e) that fulfills the PDE (18)

and the boundary condition (17) is the sum of the potential

functions V (e). Hence, the optimal control law is given by

u = −ĤT
u [∂V (e)/∂e]

T
and V (e) is the value function.

B. Cooperative Graphs

In the general directed graph case each robot has its own

potential function that it is trying to optimize and we are

not able to derive the overall control law from the function

V (e). In this case we don’t know if the overall control can be

related to a meaningful optimal control problem. However, an
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idea that might generalize is that the robots act cooperatively

in the sense that they behave as if the sensor graph were

undirected. We refer to such graphs as cooperative graphs

and define them as follows.

Definition 4.1: Consider a directed graph G with matrices

H and O and the matrix Hu of the corresponding undirected

graph. The graph G is said to be cooperative if

HO + OT HT = c HuHT
u , (19)

where c = 2 if G is itself undirected, and c = 1 else.

Remark 4.1: Note that cooperative graphs strongly resem-

ble the class of balanced graphs [17] for which holds (in our

notation) OH + HT OT = 2HT
u Hu ([17], Theorem 7).

Unlike the inverse optimality result in Theorem 4.1, Defi-

nition 4.1 does not, at first glance, seem to relate the sensor

graph to a cooperative behavior among the robots. This be-

comes obvious by an equivalent description of a cooperative

graph in terms of a differential dissipation inequality.

Lemma 4.1: Under the assumptions of Definition 4.1 the

graph G is cooperative if and only if for every e ∈ Im Ĥ

∂V (e)

∂e
ė ≡ −

c

2
[v(e) − d]T RG(e) RG(e)T [v(e) − d] , (20)

where V (e) is defined in (8) and c as in Definition 4.1.

Proof: For a directed graph G the derivative of V (e)
along trajectories of the link dynamics (7) is given by

∂V (e)

∂e
ė = −[v(e) − d]T D(e)T ĤÔD(e)[v(e) − d]

= −
1

2
[v(e) − d]T D(e)T

(

ĤÔ + ÔT ĤT
)

D(e)[v(e) − d].

With RG(e) written out the right-hand side of (20) is

(c/2) [v(e) − d]T D(e)T ĤuĤT
u D(e)[v(e) − d] (21)

and clearly equals (∂V (e)/∂e)ė iff (19) holds with c = 1.

In the case of an undirected graph we look at the dynamics

(12), that is, the link dynamics corresponding to edges with

orientation given in E+. By straightforward calculation it can

be verified that both (19) and (20) always hold for c = 2.

Remark 4.2: The apparently artificial distinction of undi-

rected graphs from directed ones via the factor c arises

because edges are not counted twice for undirected graphs

and it is sufficient to look the dynamics of one set of edges.

Suppose solutions of the link dynamics exist on an un-

bounded time interval (shown in the next section), then (20)

may be integrated over [t,∞) to obtain exactly the closed-

loop functional (15) with a possibly non-vanishing but finite

terminal cost V (e(∞)). That is to say, for a cooperative

graph the closed-loop link dynamics optimize the same

common cost functional as in the undirected graph case. The

following theorem identifies besides undirected graphs also

directed cycles and open chains as cooperative graphs.

Theorem 4.2: Every undirected graph, every directed cy-

cle, and every directed open chain is a cooperative graph.

Proof: The proof in the case of undirected graphs is

trivial. We will prove it in the case of directed cycles. A

directed cyclic graph has the same number of nodes as links

(n = m) and the graph matrices H = Pm − Im ∈ R
m×m

and O = −Im ∈ R
m×m, where Im is the m-dimensional

identity matrix, and Pm is the orthogonal and circulant

matrix Pm = circ
[

0 1 0 . . . 0
]

. For the corresponding

undirected cyclic graph the edges can be labeled, such that

Hu = H . We then have for (19) with c = 1

HO + OT HT = −(Pm − Im) − (Pm − Im)T

= (Pm − Im)(Pm − Im)T = HHT = HuHT
u .

Thus, by Definition 4.1, a directed cycle is a cooperative

graph. The proof for directed open chains is similar and

based on the fact that such graphs are almost directed cycles

with one link missing (see [14]).

In light of Theorem 4.2 both a directed and an undirected

cyclic graph are cooperative. Due to inverse optimality this

is not surprising for the undirected graph, but in the case

of a directed cycle, each robot focuses on its leader robot

only and does not care about the interconnecting link to its

follower. Nevertheless, the robots behave as if there would

be no leader-follower structure but rather an information flow

in both directions. So from the viewpoint of optimality, both

setups optimize the very same cost functional, although the

robots in the directed graph case are not meant to do so. This

quite astonishing fact also can be found for undirected and

directed open chains.

V. COOPERATIVE GRAPHS AND STABILITY OF THE

FORMATION

The notion of a cooperative graph reflects not only the

cooperative behavior among the robots but, together with the

infinitesimal rigidity of the target formation, it also admits a

direct stability result. Let us introduce the notation

Ω(c) :=
{

e ∈ ImĤ : V (e) ≤ c
}

, (22)

and establish a theorem on the limit sets of the link dynamics.

Theorem 5.1: Consider a cooperative graph G. For every

initial condition e0 ∈ ImĤ the link dynamics (7) are forward

complete and bounded in the sublevel set Ω(V (e0)), and

their solution φ(t, e0) converges to the largest invariant set

contained in

We =
{

e ∈ Ω(V (e0)) :
∥

∥RG(e)T [v(e) − d]
∥

∥ = 0
}

. (23)

Moreover, consider the sublevel set Ω(ρ) where ρ is suf-

ficiently small, such that for every e ∈ Ω(ρ), (G, e) is

minimally rigid. Then for every e0 ∈ Ω(ρ) the set Ee is

exponentially stable with respect to the link dynamics.

Proof: Note that the right-hand side of the link dy-

namics (7) is locally Lipschitz. Because the function V (e)
is positive definite with respect to the compact set Ee and

its derivative along trajectories (∂V (e)/∂e)ė given by (20)

is negative semidefinite, V (e) is a suitable set Lyapunov

function candidate for the target formation Ee. For every

initial condition e0 ∈ Ĥ
(

R
2n

)

the sublevel set Ω(V (e0))
is a compact and invariant set and thus the link dynamics

are forward complete ([18], Theorem 3.3). Note that the

assumptions for the invariance principle ([18], Theorem
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4.4) are satisfied and thus φ(t, e0) converges to the largest

invariant set in Ω(V (e0)) where (∂V (e)/∂e)ė = 0, i.e., We.

Due to minimal rigidity of the target formation the matrix

RG(e)T ∈ R
2n×m has full rank m ∀ e ∈ Ee, or said

differently RG(e)RG(e)T has no zero eigenvalues ∀ e ∈ Ee.

The eigenvalues of RG(e)RG(e)T are continuous functions

of the matrix elements and thus of e ∈ Ĥ
(

R
2n

)

. The

minimal eigenvalue of RG(e)RG(e)T is positive ∀ e ∈ Ee

and, due to continuity, also in an open neighbourhood of Ee.

Let Q be the set where the matrix RG(e)RG(e)T has a zero

eigenvalue. In order to continue, consider the level set Ω(ρ),
where ρ is small enough that Ω(ρ) does not intersect the set

Q. Since Ω(ρ) is compact, we define λ as

λ := min
e∈Ω(ρ)

eig
(

RG(e)RG(e)T
)

> 0. (24)

We then have for the derivative of V (e) along trajectories

(∀ e ∈ Ω(ρ)) V̇ (e) ≤ −
λc

2
‖[v(e) − d]‖2

=−λc V (e), (25)

and thus ∀e ∈ Ω(ρ), V̇ (e) is negative definite with respect to

Ee. Therefore, by standard arguments of set stability theory

[19], the set Ee is asymptotically stable with Ω(ρ) as guaran-

teed region of attraction. Moreover, by the Bellman-Gronwall

Lemma ([18], Lemma A.1), we have that ∀ e0 ∈ Ω(ρ),
V (e(t)) ≤ V (e0)e

−λct and, after applying some inequalities,

we can indeed show that the point-to-set distance to the set

Ee is exponentially decreasing.

Although the link dynamics (7) and the z-dynamics (5)

both have the target formation as an equilibrium set, the

convergence φ(t, e0) → Ee in the link space does not imply

convergence to a finite point in the state space but only a

convergence of the point-to-set distance to the set Ez .

The exponential convergence rate of the link dynamics

allows us to remove this obstacle. For every initial condition

z0 ∈ Ĥ−1 (Ω(ρ)) the link dynamics with initial condition

e0 = Ĥz0 converge exponentially to Ee. Hence, the function

f(t) := −ÔD(φ(t, e0))[v(φ(t, e0)) − d] (26)

is exponentially decreasing in time and thus a L1 function.

The z-dynamics can then be written in integrated form as

z(t) = z0 +

∫ t

0

f(τ) dτ. (27)

Since f ∈ L1, the integral on the right-hand side of (27)

exists even in the limit as t → ∞ and thus a solution of the

z-dynamics converges to a finite point in Ez .

We are now ready to state our final theorem.

Theorem 5.2: Consider a cooperative sensor graph G. For

every initial condition z0 ∈ Ĥ−1 (Ω(ρ)) the control law (4)

solves the formation control problem.

VI. CONCLUSIONS AND OUTLOOK

This paper related the formation control problem of au-

tonomous robots in the undirected graph case to an optimal

control problem of the overall system, which is related to

rigidity and to the target formation. The definition of a

cooperative graph allowed us to extend the implications of

this result to directed graphs; directed cycles and directed

open chains are identified as such graphs. The two ingredi-

ents, a cooperative graph and minimal rigidity of the target

formation, led directly to a stability result with a guaranteed

region of attraction.

The definition of a cooperative graph imitates the behavior

of the robots as if they were interconnected in an undirected

graph. This quite restrictive definition can be modified to

capture a wider variety of graphs. Cooperative graphs also

do not extend to acyclic graphs whose analysis is mainly

based on the cascade structure of the overall system [4], [10].

A different way to capture such graphs or a situation, such

as in Figure 2, could be a non-cooperative game approach.

Finally, for a global stability analysis of the link dynamics, it

has to be shown that Ee is the only positively invariant set in

We. This can be done by methods of differential geometry,

which will be shown in the journal version of this paper.
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