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1. Introduction

A significant amount of research efforts have been focused on
the control of multi-agent systems due to both their practical po-
tential in various applications and theoretical challenges arising in
coordination and control of them. Theoretical challenges mainly
arise from controlling multi-agent systems based on partial and
relative informationwithout an intervention of a central controller.

Formation control, which is one of the most actively studied
topics within the realm of multi-agent systems, generally aims to
drive multiple agents to achieve prescribed constraints on their
states. Depending on the sensing capability and the interaction
topology of agents, a variety of formation control problems have
been studied in the literature.

Excellent surveys of formation control of multi-agent systems
are found in Anderson, Yu, Fidan, and Hendrickx (2008); Chen and
Wang (2005);Mesbahi and Egerstedt (2010); Olfati-Saber, Fax, and
Murray (2007); Ren, Beard, and Atkins (2005); Ren, Beard, and
Atkins (2007); Ren and Cao (2010) and Scharf, Hadaegh, and Ploen
(2004). However, Chen and Wang (2005); Mesbahi and Egerstedt
(2010); Olfati-Saber et al. (2007); Ren, Beard, and Atkins (2005);
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Ren, Beard et al. (2007) and Ren and Cao (2010) have mainly
focused on consensus based formation control. Some important
results, particularly on inter-agent distance based formation con-
trol, have not been extensively reviewed in those surveys. Scharf
et al. (2004) have presented a survey of spacecraft formation fly-
ing rather than an extensive survey of generalmulti-agent systems.
An excellent introduction of inter-agent distance based formation
control is found in Anderson et al. (2008); however, a considerable
amount of studies have been conducted thereafter. Thus we be-
lieve that it is timely and helpful to present an extensive survey of
formation control of multi-agent systems.

Due to the vast amount of the literature, it would be challenging
to exhaustively review the existing results on formation control.
Rather than an exhaustive review, we thus focus on the character-
ization of formation control schemes in terms of the sensing ca-
pability and the interaction topology of agents because we believe
that both of themare linked to the essential features ofmulti-agent
formation control.

The characterization of formation control schemes in terms of
the sensing capability and the interaction topology naturally leads
to the question of what variables are sensed and what variables
are actively controlled by multi-agent systems to achieve their de-
sired formation. The types of sensed variables specify the require-
ment on the sensing capability of individual agents. Meanwhile,
the types of controlled variables are essentially connected to the
interaction topology. Specifically, if positions of individual agents
are actively controlled, the agents can move to their desired po-
sitions without interacting with each other. In the case that inter-
agent distances are actively controlled, the formation of agents can
be treated as a rigid body. Then the agents need to interact with
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Table 1
Distinctions among position-, displacement-, and distance-based formation control.

Position-based Displacement-based Distance-based

Sensed variables Positions of agents Relative positions of neighbors Relative positions of neighbors
Controlled variables Positions of agents Relative positions of neighbors Inter-agent distances
Coordinate systems A global coordinate system Orientation aligned local coordinate systems Local coordinate systems
Interaction topology Usually not required Connectedness or existence of a spanning tree Rigidity or persistence
each other to maintain their formation as a rigid body. In short, the
types of controlled variables specify the best possible desired for-
mation that can be achieved by agents, which in turn prescribes
the requirement on the interaction topology of the agents.

Based on the aforementioned observation, we categorize the
existing results on formation control into position-, displace-
ment-, and distance-based according to types of sensed and
controlled variables:

• Position-based control: Agents sense their own positions with
respect to a global coordinate system. They actively control
their own positions to achieve the desired formation, which is
prescribed by the desired positions with respect to the global
coordinate system.

• Displacement-based control: Agents actively control displace-
ments of their neighboring agents to achieve the desired for-
mation, which is specified by the desired displacements with
respect to a global coordinate systemunder the assumption that
each agent is able to sense relative positions of its neighboring
agents with respect to the global coordinate system. This im-
plies that the agents need to know the orientation of the global
coordinate system. However, the agents require neither knowl-
edge on the global coordinate system itself nor their positions
with respect to the coordinate system.

• Distance-based control: Inter-agent distances are actively con-
trolled to achieve the desired formation, which is given by the
desired inter-agent distances. Individual agents are assumed to
be able to sense relative positions of their neighboring agents
with respect to their own local coordinate systems. The orien-
tations of local coordinate systems are not necessarily aligned
with each other.

Note that the above categorization is useful in characterizing
formation control schemes in terms of the requirement on the
sensing capability and the interaction topology. As summarized
in Table 1, position-based control is particularly beneficial in
terms of the interaction topology though it requires agents to be
equipped with more advanced sensors than the other approaches.
Conversely, distance-based control is advantageous in terms of
the sensing capability, but it requires more interactions among
agents. Displacement-based control is moderate in terms of both
sensing capability and interaction topology compared to the other
approaches. Roughly speaking, this reveals a trade-off between the
amount of interactions among agents and the requirement on the
sensing capability of individual agents as illustrated in Fig. 1.

Though decentralization is one of important themes in multi-
agent formation control, we avoid characterizing the existing
results into centralized and decentralized due to the following two
reasons. First, a formation control scheme may be classified into
centralized or decentralized according towhether or not it requires
a global coordinator2; however, such a categorization is not
appropriate for an overview of various formation control schemes.
Indeed, under this criterion, we find that most of formation

2 By a global coordinator, we mean an entity that gathers information from all
agents, makes some decision, and then distributes some coordination command to
the agents. In this respect, decentralized control is compatible with local control in
the sense that a global coordinator is not required.
Fig. 1. Sensing capability vs. interaction topology.

control schemes found in the literature fall into decentralized
control because they do not explicitly require a global coordinator.
Second, meanings of decentralized formation control are not
exactly the same in the literature and rather subjective. Thus a
characterization in terms of decentralization may cause further
confusion, which is not desirable.

On the other hand, the concepts of the terms, local and relative,
which are often used for describing features of formation control
schemes, can be clearly described based on the requirement on the
sensing capability and the interaction topology. In the following,
we attempt to sort out several concepts associatedwith the terms:

• Relative: Every formation control scheme requires agents to
sense variables such as positions and attitudes with respect
to either local coordinate systems associated with individual
agents or a global coordinate system associated with the multi-
agent system. The term relative is usually taken to mean that
a variable is sensed with respect to a local coordinate system,
not a global one. Conversely, a variable that is sensed with
respect to a global coordinate system is called absolute. Onemay
associate relative with decentralized. In this respect, distance-
based formation control can be considered more decentralized
than position- and displacement-based control. However, such
a characterization may cause confusion because decentralized
has other meanings. Nevertheless, we emphasize that the
concept of relative can be clearly described in terms of the
sensing capability of individual agents.

• Local: The term local can be understood in several ways. First, it
can be associated with interactions among agents. A formation
control scheme that requires agents to interact with all the
other agents can be considered non-local. Otherwise, as it
requires less interactions, it can be considered more local. This
concept can be clearly described by the interaction topology.
Second, local can be taken to mean that a variable is sensed
with respect to a local coordinate system. That is, local means
relative in terms of sensing of variables. In this case, the concept
of local can be clearly described by the sensing topology. Finally,
it involves with the non-existence of a global coordinator as
mentioned above.

Based on the above discussions, once again, we try to avoid
characterizing the existing results into centralized and decen-
tralized because it may cause confusion. Rather than centralized
and decentralized control, we categorize the existing results into
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position-, displacement-, and distance-based formation control.
We then summarize problem formulations, discuss distinctions,
and review recent results, particularly focusing on the sensing ca-
pability and the interaction topology. We believe that the cate-
gorization is useful for providing a clear overview of multi-agent
formation control though it does not exhaustively cover the ex-
isting results. Since the categorization is not exhaustive, we ad-
ditionally summarize some results that do not fit neatly into the
categorization to make this survey more extensive. Specifically
we review flocking, estimation based control, pure distance-
based control, angle-based control, containment control, and cyclic
pursuit.

The rest of this survey is organized as follows: In Section 2, we
briefly review basic graph theory. In Section 3, we discuss various
classifications of formation control. In Sections 4–6, we discuss
position-, displacement-, and distance-based formation control
and review the existing results. Summary and discussions of issues
are provided in Section 7. Some other results that do not fit into
the categorization are reviewed in Section 8. Finally, concluding
remarks and future works are provided in Section 9.

2. Preliminaries

2.1. Notations

We denote the set of non-negative (respectively, positive) real
numbers by R̄+ (respectively, R+). Given a set S, |S| denotes the
cardinality of S. Given a real vector x, ∥x∥ denotes the Euclidean
norm of x. Given a matrix A, rank(A) denotes the rank of A. We
denote the n-dimensional identitymatrix by In. Given twomatrices
A and B, A ⊗ B denotes the Kronecker product of the matrices.
Given variables x1, . . . , xN , we denote [xT1 · · · xTN ]

T by x if there is
no confusion.

2.2. Graph theory

The interaction topology of a multi-agent system is naturally
modeled by a graph. Specifically, agents can be represented as
nodes of a graph and interactions such as sensing and communi-
cation can be represented as edges of the graph. We call the graph
associated with the interaction topology of a multi-agent system
the interaction graph. We review basic graph theory in this sub-
section. Details are found in Godsil and Royle (2001).

A directed graph G is defined as a pair (V, E), where V denotes
the set of nodes and E ⊆ V × V denotes the set of ordered pairs
of the nodes, called edges. We assume that there is no self-edge,
i.e., (i, i) ∉ E for any i ∈ V . The set of neighbors of i ∈ V is
defined as a set Ni := {j ∈ V : (i, j) ∈ E}. The graph G is said
to be strongly connected if there is a path from any node to the
other nodes. A directed path of G is an edge sequence of the form
(vi1 , vi2), (vi2 , vi3), . . . , (vik−1 , vik). If (i, j) ∈ E , j is called a parent
of i and i is called a child of j. A tree is a directed graphwhere a node,
called the root, has no parent and the other nodes have exactly
one parent. A spanning tree of a directed graph is a directed tree
containing every node of the graph.

Given a directed graph G = (V, E), let wij be real numbers
associated with (i, j) for i, j ∈ V . We assume thatwij > 0 if (i, j) ∈

E and wij = 0 otherwise. The Laplacian matrix L = [lij] ∈ R|V|×|V|

of G is defined as

lij =



k∈Ni

wik, if i = j;

−wij, if i ≠ j.

Let edges of G be time-varying. We assume that wij(t) ∈

[wmin, wmax] if (i, j) ∈ E(t), where 0 < wmin < wmax and wmax
are finite, and wij(t) = 0 otherwise, for any t ≥ t0. For any t1
and t2 such that t2 > t1 > t0, we define set E[t1,t2] as follows:
(i, j) ∈ E[t1,t2] if

 t2
t1
wij(τ )dτ > 0 and (i, j) ∉ E[t1,t2] otherwise.

The graph G is said to be uniformly connected if, for any t ≥ t0,
there exists a finite time T and a node i ∈ V such that i is the root
of a spanning tree of the graph (V, E[t,T ]) (Lin, Francis, & Maggiore,
2007; Moreau, 2004, 2005).

We consider undirected graphs as directed ones with special
properties. Let G be a directed graph such that (i, j) ∈ E if and
only if (j, i) ∈ E and wij = wji for all (i, j) ∈ E . Then G is said to
be undirected. If there is a path from any node to any other nodes,
G is said to be connected. The Laplacian matrix L of G is symmetric
and positive-semidefinite. If G is connected, the second smallest
eigenvalue of L is positive.

3. Formation control problems

3.1. A general formation control problem

We first formulate a formation control problem under a
general problem setup. We then discuss distinctions of position-,
displacement-, and distance-based formation control problems in
terms of sensed and controlled variables and control objectives of
agents.

Consider the following N-agents:ẋi = fi(xi, ui),
yi = gi(x1, . . . , xN),
zi = hi(xi),

i = 1, . . . ,N, (1)

where xi ∈ Rni , ui ∈ Rpi , yi ∈ Rqi , and zi ∈ Rr denote the state,
measurement, and output of agent i. Further fi : Rni × Rpi → Rni ,
gi : Rn1 × · · · × RnN → Rqi , and hi : Rni → Rr . Let z∗

∈ RrN

be given, which can be a function of time. Let F : RrN
→ RM be

given. The desired formation for the agents (1) is specified by the
following constraint:

F(z) = F(z∗). (2)

Under this setup, a formation control problem is stated as follows:

Problem 3.1 (A General Formation Control Problem). Design a
control law by using only measurements yi such that the set

Ez∗ = {x : F(z) = F(z∗)}

is asymptotically stablewith respect to themulti-agent system (1).

In terms of Problem 3.1, we describe position-, displacement-,
and distance-based formation control problems in the following:

• Position-based problem: Measurements yi contain some abso-
lute variables that are sensedwith respect to a global coordinate
system. The constraint (2) is given as

F(z) := z = F(z∗). (3)

Agents i actively control zi.
• Displacement-based problem: Measurements yi contain rel-

ative variables that are sensed with respect to a global co-
ordinate system. However, they do not contain any absolute
variables that need to be sensed with respect to the global co-
ordinate system. The constraint (2) is given as

F(z) := [· · · (zj − zi)T · · ·]
T

= F(z∗) (4)

for i, j = 1, . . . ,N . The constraint (4) is invariant to translation
applied to z. Agents actively control [· · · (zj − zi)T · · ·]

T in this
problem.
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• Distance-based problem: In a distance-based control problem,
measurements yi contain only relative variables that can be
sensed with respect to local coordinate systems of the agents.
They do not contain any absolute and relative variables that
need to be sensed with respect to a global coordinate system.
The constraint (2) is usually given as

F(z) := [· · · ∥zj − zi∥ · · ·]
T

= F(z∗) (5)

for i, j = 1, . . . ,N . The constraint (5) is invariant to combina-
tion of translation and rotation applied to z. Agents actively con-
trol [· · · ∥zj − zi∥ · · ·]

T in this problem.

Note that the objective of the multi-agent system (1) in
Problem 3.1 is to achieve F(z) → F(z∗), which is not necessarily
z → z∗. The constraint (2) is different depending on problem
setups as discussed above. Suppose that z be the position vector
of the multi-agent system (1). Then the constraint (3) specifies the
desired positionswith respect to the global coordinate system. The
constraints (4) and (5) are invariant to translation and combination
of translation and rotation, respectively, applied to the formation
of the agents. A constraint that is invariant to combination of
translation, rotation, and scaling of the formation of the agents is
found in angle-based formation control (Basiri, Bishop, & Jensfelt,
2010; Bishop, 2011b; Bishop, Shames, & Anderson, 2011). In angle-
based formation control, the constraint is given as F(z) := z = z∗,
where zi are subtended angles. Thus this constraint is invariant to
the combination of translation, rotation, and scaling applied to the
formation of agents.

We remark that consensus can be generally considered as a
special class of formation control. To see this, let z∗

= 0 and
F(z) = [· · · (zj − zi)T · · ·]

T for i, j = 1, . . . ,N . Under this setup,
Problem 3.1 becomes a general output consensus problem, which
is called a rendezvous problem in formation control.

3.2. Classifications of formation control

Depending on problem setups, a variety of formation control
problems can be formulated. Though we categorize formation
control schemes into position-, displacement-, and distance-based
in this survey, the existing results may be classified based on other
criteria. In this subsection, we thus discuss several classifications.

According to whether or not desired formations are time-
varying, Ren and Cao (2010) have classified the formation control
problems as follows:

• Formation producing problems: The objective of agents is to
achieve a prescribed desired formation shape. In the literature,
these problems have been addressed through matrix theory
based approach, Lyapunov based approach, graph rigidity
approach, and receding horizon approach (Ren & Cao, 2010).

• Formation tracking problems: Reference trajectories for agents
are prescribed and the agents are controlled to track the
trajectories. These problems have been studied through matrix
theory based approach, potential function based approach,
Lyapunov based approach, and some other approaches (Ren &
Cao, 2010).

According to fundamental ideas in control schemes, Beard,
Lawton, andHadaegh (2001) and Scharf et al. (2004) have classified
formation control into leader–follower, behavioral, and virtual
structure approaches:

• Leader–follower approach: At least one agent plays a role as a
leader and the rest of the agents are designated as followers. The
followers track the position of the leader with some prescribed
offsets while the leader tracks its desired trajectory.
• Behavioral approach: Several desired behaviors are prescribed
for agents in this approach. Such desired behaviorsmay include
cohesion, collision avoidance, obstacle avoidance, etc. This
approach is related to amorphous formation control described
below.

• Virtual structure approach: In this approach, the formation of
agents is considered as a single object, called a virtual structure.
The desiredmotion for the virtual structure is given. The desired
motions for the agents are determined from that of the virtual
structure.

Depending on whether or not desired formation shapes are
explicitly prescribed, one may also classify formation control
problems as follows:

• Morphous formation control: Desired formations are explicitly
specified by desired positions of agents, desired inter-agent
displacements, desired inter-agent distances, etc.

• Amorphous formation control: Without explicitly specified de-
sired formations, desired behaviors such as cohesion, collision
avoidance, etc., are given for agents. Amorphous formation con-
trol is related to behavioral approach discussed above.

4. Position-based formation control

In this section, we review position-based formation control.
A typical position-based formation control scheme imposes the
following requirement on agents:

• Sensing capability: The agents are required to commonly have
a global coordinate system. They need to sense their absolute
positions with respect to the global coordinate system.

• Interaction topology: The desired formation is specified by
the desired absolute positions for the agents. In this case,
interactions are not necessarily required because the desired
formation can be achieved by position control of individual
agents. Interactions among the agents can be introduced
in position-based control for the purposes of enhancing
control performance or addressing additional objectives such
as formation shape keeping. The interaction graph of the agents
typically needs to be connected or have a spanning tree.

Research directions in position-based control are twofold in
the literature. First, interactions among agents are introduced to
enhance performance of formation control. Such interactions turn
out to be beneficial. Second, a global coordinator is introduced to
take feedback fromagents and provide the agentswith appropriate
coordination commands. This feedback coordination is beneficial if
the agents have limited actuation capabilities or they are subject to
disturbances.

Though the desired formation that is specified by the absolute
positions can be essentially achieved by position control of
individual agents, interactions among the agentsmay be beneficial.
To clarify this,we consider the following single-integratormodeled
agents, i.e., ṗi = ui, where pi ∈ Rn and ui ∈ Rn denote the position
and control input of agent i with respect to a global coordinate
system for i = 1, . . . ,N . Suppose that the objective of the agents
be to move from their initial positions to the desired ones while
controlling their formation shape. Let p∗

∈ RnN be given. The
objective is to achieve p → p∗ while satisfying pj − pi = p∗

j − p∗

i
for i, j = 1, . . . ,N during the movement. Assume that the agents
sense their absolute positionswith respect to the global coordinate
system. Based on the assumption, we first consider the following
control law:

ui = kp(p∗

i − pi),

where kp > 0. Let ep := p∗
− p to obtain the error dynamics,

ėp = −kpep, which shows exponential convergence of p to p∗.
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To enhance the control performance, we then allow the agents
to interact with each other based on an interaction graph G. By
introducing additional control inputs


j∈Ni

wij(pj − pi), the error
dynamics is arranged as

ėp = −kpep − (L ⊗ In)ep,

where L is the Laplacian matrix. Let G have a spanning tree. The
Gers̆gorin’s disc theorem (Horn & Johnson, 1990) ensures that the
eigenvalues of kpIN +L are greater than or equal to kp, which shows
that the additional control inputs are beneficial.

Ren and Atkins (2007) have proposed a position-based control
scheme that requires double-integratormodeled agents to interact
with each other. The agents are modeled by p̈i = ui, where pi ∈ Rn

and ui ∈ Rn denote the position and control input of agent i
with respect to a global coordinate system for i = 1, . . . ,N . The
interaction graph is given as a graph G. The agents are assumed
to be able to sense their absolute positions, absolute velocities,
and relative positions of their neighbors with respect to the global
coordinate system. The objective of the agents is to move from
their initial positions to the desired positions while keeping their
formation shape during the movement. The desired positions and
the desired formation shape for the agents are specified by p∗. Ren
and Atkins (2007) have proposed a control law, which leads to the
following error dynamics:

ëp = −ka(kv ėp + kpep)− (L ⊗ In)(kv ėp + kpep), (6)

where ka > 0, kp > 0, and kv > 0. In the error dynamics (6),
the term −(L ⊗ In)(kv ėp + kpep) results from interactions among
the agents. By simulation, Ren and Atkins (2007) have shown that
the agents can move to their desired positions while satisfactorily
preserving their desired formation shape by suitably taking ka, kp,
and kv if G has a spanning tree.

A similar idea for nonholonomic agents is found in Dong and
Farrell (2008a,b). They have studied formation control of nonholo-
nomic agents described by a canonical chained form based on a
position-based control scheme, which requires the agents to inter-
act with each other. Under the assumption that the agents sense
their own states and relative states of their neighbors with respect
to a global coordinate system, they have proposed a position-based
control law to drive the agents to track the desired trajectories. By
applying the proposed control law to unicycles, they have shown
that trajectory tracking is satisfactorily achieved for static inter-
action graph (Dong & Farrell, 2008a) and time-varying interaction
graph cases (Dong & Farrell, 2008b). van den Broek, van deWouw,
and Nijmeijer (2009) have studied a trajectory tracking problem
for agents modeled by unicycle-type kinematic model under the
assumption that each agent senses its own position and heading
angle with respect to a global coordinate system. van den Broek
et al. (2009) also have introduced undirected coupling inputs based
on the relative tracking errors assuming that the interaction graph
is connected.

In the presence of disturbances or actuator limitation, agents
might not be able to perfectly track their desired trajectories by
position control of individual agents. Feedback coordination pro-
vides a solution to the problem. The concept of feedback coordi-
nation has been introduced in Lewis and Tan (1997) and Tan and
Lewis (1996), where a problem of the maintenance of the forma-
tion shape during movement of agents has been studied under
a virtual structure based control scheme. In the control scheme,
the formation of agents is considered as a rigid body, called a vir-
tual structure. We summarize the result found in Lewis and Tan
(1997) and Tan and Lewis (1996). Let p1, . . . , pN ∈ R3 be the po-
sitions of the agents with respect to a global coordinate system.
Given p∗, the objective of the agents is to move to p∗ while satisfy-
ing ∥pj − pi∥ = ∥p∗

j − p∗

i ∥ during the movement. The agents are
assumed to able to sense their absolute positions with respect to
Fig. 2. Architecture for formation flying.
Source: Taken from Beard et al. (2001).

the global coordinate system. The virtual structure based control
scheme found in Lewis and Tan (1997) and Tan and Lewis (1996)
consists of iteration of the following procedure:

(1) A global coordinator solves the following optimization prob-
lem to determine the position and orientation of the virtual
structure:

minimize
n

i=1

∥p∗

i − pc − Rpi∥

subject to pc ∈ R3, R ∈ SO(3),

where SO(3) denotes the special orthogonal group. By doing
this, the global coordinatormatches the virtual structure to the
positions of the agents.

(2) Based on pc , R, and p∗, the global coordinator generates
the desired motion for the virtual structure taking actuation
capabilities of the agents into consideration and then translates
the desired motion into the desired trajectories for the agents.

(3) The agents control their positions to track the desired
trajectories assigned by the global coordinator.

The key idea in the above procedure is that the global coordina-
tor generates the desired trajectories taking the agents into consid-
eration, which can be called feedback coordination. This feedback
coordination is beneficial if the agents have limitation in their ac-
tuation capabilities or they are subject to disturbances.

Another feedback coordination scheme is found in Beard et al.
(2001), where an architecture for spacecraft formation flying has
been proposed as depicted in Fig. 2. In the architecture, a formation
coordinator gathers performance data from the spacecrafts and
generates coordination variables to broadcast them. To enhance
formation shape control performance, additional control inputs are
generated by the individual spacecrafts based on the coordination
variables. Young, Beard, and Kelsey (2001) have utilized the
architecture proposed in Beard et al. (2001) for formation tracking
of unicycles. A similar architecture has been proposed in Ren, Beard
et al. (2007). Extending the results in Beard et al. (2001); Lewis
and Tan (1997); Ren and Beard (2004) and Tan and Lewis (1996)
have considered formation feedback from agents in their virtual
structure approach. Do and Pan (2007) have addressed a formation
tracking problem for two-wheel drivenmobile agents based on the
architecture proposed in Beard et al. (2001).

A position-based control scheme for general linear agents is
found in Fax and Murray (2002, 2004). They have considered the
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p

(a) Displacement-based setup. (b) Distance-based setup.

Fig. 3. Formation control problem setups.
following identical, linear time-invariant agents over a graph G:
ẋi = APxi + BPui,
yi = CPaxi,

zi =


j∈Ni

CPr (xi − xj),
i = 1, . . . ,N, (7)

where xi ∈ Rn, ui ∈ Rp, yi ∈ Rqa , and zi ∈ Rqr are the state, control
input, absolutemeasurement, and relativemeasurement of agent i.
Further AP , BP , CPa , and CPr are constant matrices with appropriate
dimensions. Fax and Murray (2002, 2004) have proposed the
following dynamic control law:
ξ̇i = AK ξi + BKayi + BKr zi,
ui = CK ξi + DKayi + DKr zi,

i = 1, . . . ,N, (8)

where ξi ∈ Rr and the matrices AK , BKa , BKr , CK , DKa , and DKr
are constant matrices with appropriate dimensions. When the
control law (8) uses the absolute measurements yi, they can be
considered position-based. If (8) does not depend on the absolute
measurements, it can be considered displacement-based. It might
be difficult to check stability of the multi-agent system described
by (7) and (8) if N is very large. Fax and Murray (2002, 2004) have
shown that the multi-agent system is asymptotically stable if and
only if the following systems are asymptotically stable:ẋi = APxi + BPui,
yi = CP,axi,
zi = λiCPr xi,

i = 1, . . . ,N,

where λi are the eigenvalues of L. Further they have provided a
Nyquist criterion that is useful for checking stability.

5. Displacement-based formation control

We review displacement-based formation control in this
section. A typical displacement-based formation control scheme
imposes the following requirement on agents:

• Sensing capability: The agents are required to have their own
local coordinate systems, orientations of which are aligned to
that of a global coordinate system. However, they do not nec-
essarily know the origin of the global coordinate system. With
respect to the local coordinate systems, the agents are required
to sense relative positions (displacements) of their neighbors
with respect to the global coordinate system, which implies ex-
istence of interactions. Note that relative positions with respect
to the local coordinate systems are the same as those with re-
spect to the global coordinate system due to the alignment of
the coordinate systems.
• Interaction topology: The desired formation for the agents is
specified by the desired displacements from any agents to the
others. To achieve the desired formation, the agents actively
control the displacements of their neighbors. Thus the interac-
tion graph needs to ensure achievement of the desired forma-
tion by controlling only the displacements of their neighbors,
which can be characterized by either connectedness or exis-
tence of a spanning tree. In the case that edges of the interaction
graph are time-varying, uniform connectedness characterizes
the graph condition.

In the following, we review displacement-based formation
control for single- and double-integrator modeled agents, general
linear agents, and nonholonomic agents. Further we discuss
practical issues such as realizability of desired formations and
connectivity preservation.

5.1. Single-integrator modeled agent case

Consider the following single-integrator modeled agents in n-
dimensional space over a graph G:

ṗi = ui, i = 1, . . . ,N, (9)

where pi ∈ Rn and ui ∈ Rn denote the position and control input of
agent iwith respect to a global coordinate system.We assume that
the agents sense relative positions of their neighbors with respect
to the global coordinate system. Specifically, we assume that the
following relative positions are available to agent i:

pji := pj − pi, j ∈ Ni. (10)

In this problem setup, each agent has its own local coordinate
system. Further the orientation of the coordinate system needs
to be aligned to that of the global coordinate system, which can
be achieved by using magnetic sensors (Caruso, 2000). Fig. 3(a)
illustrates the coordinate systems under this problem setup.

Let p∗
∈ RnN be given. The objective of the agents is to satisfy

the following constraints:

pi − pj = p∗

i − p∗

j , i, j ∈ V.

In general, p∗

i are not the absolute desired positions for the agents.
They only specify thedesireddisplacements. Thedesired formation
for the agents is defined as

Ep∗ := {p : pj − pi = p∗

j − p∗

i , i, j ∈ V}. (11)

That is, the objective of the formation control is to drive p to p∗ up
to translation.
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This formation control problem can be solved by using a
consensus protocol. Consider the following control law:

ui = kp

j∈Ni

wij(pj − pi − p∗

j + p∗

i ), (12)

where kp > 0. Let ep := p∗
− p to obtain the following consensus

dynamics:

ėp = −kp(L ⊗ In)ep, (13)

which has been studied for undirected (Olfati-Saber & Murray,
2004) and directed interaction graph cases (Ren, Beard, & McLain,
2005). A similar result for discrete-time agents is found in
Jadbabaie, Lin, and Morse (2003). According to Ren, Beard, and
McLain (2005), Ep∗ is exponentially stable if and only if G has a
spanning tree. Let edges of G be time-varying. If G is uniformly
connected, Ep∗ is uniformly exponentially stable with respect
to discrete-time agents (Moreau, 2005). An analogous result for
continuous-time agents is found in Lin et al. (2007). A similar result
has been revealed for fractional-order single-integrators in Cao and
Ren (2010).

In the aforementioned problem, it is assumed that the desired
formation is specified by p∗. On the other hand, one can specify the
desired formation by prescribing the desired displacements δ∗

ji for
all (i, j) ∈ E . By ordering δ∗

ji in some way, let δ∗
:= [· · · δ∗T

ji · · ·]
T

∈

Rn|E | for all (i, j) ∈ E . Then the pair (G, δ∗) is said to be realizable in
Rn if there exists p∗

∈ RnN such that p∗

j − p∗

i = δ∗

ji for all (i, j) ∈ E

(Ji & Egerstedt, 2007). In the case that (G, δ∗) is realizable inRn, the
agents achieve the desired formation under the following control
law

ui = kp

j∈Ni

wij(pj − pi − δ∗

ji) (14)

if and only if G has a spanning tree (Ren, Beard, & McLain, 2005).
In majority of the existing results, it has been assumed that
(G, δ∗) is realizable. What happens if (G, δ∗) is not realizable?
According to Dimarogonas and Kyriakopoulos (2008b), if (G, δ∗) is
not realizable, velocities of the agents (9) asymptotically converge
to (1/N)

N
i=1


j∈Ni

δ∗

ji under the control law (14).
It has been often assumed that edges of the interaction graph

are independent on positions of agents. However, agents usually
have limited sensing ranges and thus edges ofG are functions of the
positions of the agents. This implies that connectedness of G needs
to be preserved by an appropriate control law. Ji and Egerstedt
(2007) have studied connectivity preservation in displacement-
based formation control of single-integrator modeled agents.
Assuming that the agents have a limited sensing range, they
have proposed a formation control law and shown that desired
formation is achieved under a certain condition.

Robustness against failures in relative position sensing and
errors has been studied in Cortés (2009). Based on the Jacobi
over-relaxation algorithm, Cortés (2009) has proposed a formation
control algorithm for single-integratormodeled agents in discrete-
time domain and shown robustness of the proposed algorithm
against measurement failures and errors.

5.2. Double-integrator modeled agent case

Consider the following N double-integrator modeled agents in
n-dimensional space over a graph G:
ṗi = vi,
v̇i = ui,

i = 1, . . . ,N, (15)

where pi ∈ Rn, vi ∈ Rn, and ui ∈ Rn denote the position,
velocity, and control input of agent i with respect to a global
coordinate system. The agents are assumed to be able to sense
relative positions and relative velocities of their neighbors with
respect to the global coordinate system. Let p∗

∈ RnN and v∗
∈ RnN

be given. Further let ṗ∗
= v∗ and v̇∗

= 0. The objective of the
agents is to achieve the desired formation defined as

Ep∗,v∗ := {[pT vT ]T : pj − pi = p∗

j − p∗

i ,

vj − vi = v∗

j − v∗

i , i, j ∈ V}. (16)

A displacement-based formation control law for the agents (15)
can be designed as follows:

ui = −kp

j∈Ni

wij(pi − pj − p∗

i + p∗

j )

− kv

j∈Ni

wij(vi − vj + v∗

i − v∗

j ), (17)

where kp > 0 and kv > 0. Let ep := p∗
− p and ev := v∗

− v to
obtain the following error dynamics:
ėp
ėv


=


0 InN

−kp(L ⊗ In) −kv(L ⊗ In)


  

=:Γ


ep
ev


.

Let λ1, . . . , λN be the eigenvalues of L. Due to properties of
Kronecker product (Laub, 2004), the eigenvalues of Γ are given by

µi± =

kvλi ±

k2vµ

2
i + 4kpλi

2
with multiplicity n. According to Ren and Atkins (2007), pi − pj →

p∗

i − p∗

j and vi − vj → v∗

i − v∗

j asymptotically if and only if Γ
has exactly n zero eigenvalues and all the other eigenvalues have
negative real parts. Note that existence of a spanning tree in G is
a necessary but not sufficient condition for achieving the desired
formation (16).

5.3. General linear agent case

Consider the following N-agents modeled by identical linear
time-invariant systems over a graph G:

ẋi = Axi + Bui, i = 1, . . . ,N, (18)

where xi ∈ Rn and ui ∈ Rm denote the state and control input of
agents iwith respect to a global coordinate system. Further A and B
are constant matrices of appropriate dimensions. We assume that
agents i sense the following relative values:

yji = C(xj − xi), j ∈ Ni, (19)

where C ∈ Rp×n. Let x∗
∈ RnN be given such that

ẋ∗
= (IN ⊗ A)x∗.

The objective of the agents is to achieve the following desired
formation:

Ex∗ := {x : xj − xi = x∗

j − x∗

i , i, j = 1, . . . ,N}. (20)

An immediate generalization of (12) and (17) for the agents (18) is

ui = KC

j∈Ni

wij(xj − xi), (21)

where K ∈ Rm×p. Defining ex := x∗
− x, we obtain the error

dynamics arranged as

ėx = (IN ⊗ A)ex − (L ⊗ BKC)ex. (22)

By means of a coordinate transformation, the error dynamics (22)
can be decomposed based on Jordan blocks of L. The desired for-
mation (20) is achieved if G has a spanning tree and A − λiBKC are
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Hurwitz, where λi are nonzero eigenvalues of L (Fax & Murray,
2002, 2004). Under the assumption that relative states are sensed,
i.e., C = In in (19), Tuna (2008) has proposed a linear matrix in-
equality condition to design K . The dynamic consensus law pro-
posed in Li, Duan, Chen, and Huang (2010) can be applied to for-
mation control of the agents (18). Displacement-based formation
control of general linear agents with intermittent interactions has
been studied in Wen, Duan, Ren, and Chen (2014).

5.4. Nonholonomic agent model case

Consider the following unicycles in the plane over a graph G:ẋi = vi cos θi,
ẏi = vi sin θi,
θ̇i = ωi,

i = 1, . . . ,N, (23)

where pi = [xi yi]T ∈ R2 and θi ∈ (−π, π] are the position and
heading angle of agent iwith respect to a global coordinate system
and vi ∈ R andωi ∈ R are the control inputs of agent i. Assume that
the agents sense relative positions of their neighbors with respect
to the global coordinate system. Let p∗

∈ R2N be given. The desired
formation for the agents (23) is given as (11).

Displacement-based formation control of unicycles has been
addressed in Dimarogonas and Kyriakopoulos (2008b) and Lin,
Francis, and Maggiore (2005). For the unicycles (23), the control
law proposed by Lin et al. (2005) can be written as

vi = k[cos θi sin θi]

j∈Ni

(pj − pi − p∗

j + p∗

i ),

ωi = cos t,

where k > 0. Lin et al. (2005) have shown that the desired for-
mation (11) is achieved by suitably taking the value of k if G has a
spanning tree. Dimarogonas and Kyriakopoulos (2008b) have also
studied displacement-based formation control of the unicycles
(23) over an undirected graphG. The desired formation is specified
by desired displacements δ∗. Under their proposed non-smooth
control law, they have proved that the displacements asymptoti-
cally converge to the desired values and the heading angles of the
agents converge to zero if G is connected and (G, δ∗) is realizable.
Further, considering the case that (G, δ∗) is not realizable, they
have shown that the velocities of the agents reach consensus and
the common velocity is given by (1/N)

N
i=1


j∈Ni

δ∗

ji under a cer-
tain control law. Connectivity preservation of unicycles has been
studied in Dimarogonas and Kyriakopoulos (2007). Under a non-
smooth control law that drives the unicycles to a rendezvous point,
Dimarogonas and Kyriakopoulos (2007) have shown that connec-
tivity is preserved if the interaction graph is initially connected
though the unicycles have a limited sensing range.

5.5. Further results

5.5.1. Formation transition
It is often the case that agents need tomove to prescribed abso-

lute positions. Such an objective cannot be achieved in general if no
agent senses its absolute position with respect to the correspond-
ing global coordinate system. To allow the agents to move to the
desired absolute positions, we assume that only a small number
of agents are able to sense their absolute positions. Different from
position-based control, the number of such agents is assumed to
be far less than the total number of agents.

For the single-integrator modeled agents (9), assume that at
least one agent senses its absolute position with respect to the
global coordinate system. Let p∗ be the absolute positions for the
agents (9). That is, the desired formation is p∗. Let us modify the
control law (12) as

ui = kp

j∈Ni

wij(pj − pi − p∗

j + p∗

i )+ giikp(p∗

i − pi),

where gii > 0 if agent i senses pi and gii = 0 otherwise. Then we
obtain the following error dynamics:

ėp = −kp[(L + G)⊗ In]ep,

where G = diag(g11, . . . , gNN). In the case that G is directed,
−(L + G) is Hurwitz, which means that ep → 0 exponentially, if
G has a spanning tree and the agent corresponding to the root of
the spanning tree senses its absolute position (Li et al., 2010; Ren,
2007). IfG is undirected and connected,−(L+G) is Hurwitz (Hong,
Hu, & Gao, 2006). A similar but more general idea is found in Hong
et al. (2006).

For the linear agents (18), assume that the objective of the
agents is to achieve x → x∗ and at least one agent senses its
absolute state with respect to the global coordinate system. We
modify the control law (21) as

ui = KC

j∈Ni

wij(xj − xi)+ giiKC(x∗

i − xi),

where gii > 0 if agent i senses xi and gii = 0 otherwise. We obtain
the following error dynamics:

ėx = (IN ⊗ A)ex − [(L + G)⊗ BKC]ex,

where G = diag(g11, . . . , gNN). Then x → x∗ asymptotically if
A − λiBKC are Hurwitz, where λi are eigenvalues of L + G (Zhang,
Lewis, & Das, 2011). The dynamic consensus law proposed in Li
et al. (2010) can be applied to this formation tracking. Ren, Moore,
and Chen (2007) have addressed a similar problem for high-order
integrators.

Tanner, Pappas, and Kumar (2002, 2004) have studied input to
state stability of displacement-based formation control systems.
Consider a team of agents whose interaction graph is directed
and acyclic. Any agents having no neighbor are leaders of the
team and they are assumed to sense their absolute desired states
with respect to a global coordinate system. The other agents are
followers and they are assumed to sense relative states of their
neighbors with respect to the global coordinate system. Let xi ∈ Rn

be the states of agents i. If agent i is a leader, ei is defined as
ei := x∗

i −xi, where x∗

i is the desired state of agent i. Otherwise ei :=
j∈Ni

Sji(xj−δ∗

ji)−xi, where δ∗

ji is the desired displacement of agent
j ∈ Ni and Sji are projectionmatrices such that


j∈Ni

rank(Sij) = n.
Denoting the set of the indexes of the leaders by L, they then have
presented conditions for the following inequality:

∥e(t)∥ ≤ β(∥e(0)∥, t)+


i∈L

γ ( sup
0≤τ≤t

∥ei(τ )∥),

where β is a class KL function and γ is a class K function. The
functions β and γ can be understood as gain estimates quantifying
the effect of initial formation errors and the leader formation
errors, respectively.

5.5.2. Formation scaling
It is desirable for agents to change the size of their formation

in order to dynamically adapt to changes in the environment. The
problem of scaling the size of a formation has been studied in
Coogan and Arcak (2012) and Coogan, Arcak, and Egerstedt (2011)
under a displacement-based problem setup. For the agents (9),
the desired formation is given by λ∗p∗, where λ∗ > 0 is the
scaling factor of the size of the formation. Assuming that p∗ is
known to all of the agents while λ∗ is known to some of the
agents called leaders, the objective of formation control is to drive
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p to λ∗p∗ up to translation. Since λ∗ is available to the leader
agents, formation control law for the agents can be designed as (14)
with δ∗

ji = λ∗(p∗

j − p∗

i ). Further the scaling factor can be shared
with the remaining follower agents via directed communication
(Coogan et al., 2011). In the case that communication is prohibitive,
the follower agents estimate the scaling factor λ∗ by monitoring
relative positions of their neighbors (Coogan & Arcak, 2012). A
formation control law for the follower agents can be designed as
(14) with δ∗

ji = λi(p∗

j − p∗

i ), where λi is the shared (or estimated)
scaling factor of agent i.

6. Distance-based formation control

In this section, we review distance-based formation control. In
a typical distance-based formation control scheme, the following
requirement is imposed on agents:

• Sensing capability: The agents are required to carry their own
local coordinate systems. The orientations of the coordinate
systems need not to be aligned to each other. Further the agents
do not need to have a common sense of orientation. The agents
are required to sense relative positions of their neighbors,
which implies existence of interactions among agents.

• Interaction topology: The desired formation is specified by
the desired distances between any pair of agents. That is, the
desired formation can be treated as a given rigid body. Thus the
desired formation is invariant to combination of translation and
rotation applied to the corresponding positions. To achieve the
desired position by controlling the inter-agent distances, the
interaction graph needs to be rigid or persistent as discussed
below.

In distance-based control, control laws are nonlinear even
if agent models are linear. Further, analysis of the invariant
set of a multi-agent system under a distance-based control law
is challenging. Those facts complicate distance-based formation
control. In the following, we review distance-based control of
undirected and directed formations.

6.1. Distance-based undirected formation

The desired formation for a multi-agent system is specified by
desired distances of any pair of agents in distance-based control.
If the interaction graph of the multi-agent system is not complete,
the agents are required to achieve the desired distances by con-
trolling partial inter-agent distances. This imposes a requirement
on the interaction graph. It has been shown that rigidity or persis-
tence characterizes the requirement on the interaction graph. In
the following, we review graph rigidity, which characterizes the
requirement on undirected interaction graphs in distance-based
formation control.

6.1.1. Graph rigidity
Let G = (V, E) be undirected. Then E can be partitioned as

E = E+ ∪ E− such that E+ and E− are disjoint and (i, j) ∈ E+

if and only if (j, i) ∈ E−. For (i, j) ∈ E , i is called the head node
and j is called the tail node of (i, j) ∈ E . Let V = {1, . . . ,N} and
E+ = {ϵ+,1, . . . , ϵ+,M}. ThematrixH+ = [h+,ij] ∈ RN×M is defined
as

h+,ij :=

1, if i is the tail node of ϵ+,j,
−1, if i is the head node of ϵ+,j,
0, otherwise.

Let pi ∈ Rn be points that are assigned to nodes i. Then p ∈ RnN

is said to be a realization of G in Rn. The pair (G, p) is said to be a
(a) Not rigid. (b) Rigid. (c) Globally rigid.

Fig. 4. Examples of undirected frameworks.
Source: Taken from Hendrickx et al. (2007).

framework of G in Rn. By ordering edges in E+, an edge function
gG : RnN

→ RM associated with (G, p) is defined as

gG(p) :=
1
2
[· · · ∥pi − pj∥2

· · ·]
T , (i, j) ∈ E+. (24)

The rigidity of frameworks is then defined as follows:

Definition 6.1 (Asimow & Roth, 1979). A framework (G, p) is rigid
in Rn if there exists a neighborhood Up of p ∈ RnN such that
g−1

G (gG(p)) ∩ Up = g−1
K (gK(p)) ∩ Up, where K is the complete

graph on N-nodes. Further, the framework (G, p) is globally rigid
in Rn if g−1

G (gG(p)) = g−1
K (gK(p)).

The frameworks (G, p) and (G, q) are said to be equivalent if
gG(p) = gG(q), i.e., ∥pi − pj∥ = ∥qi − qj∥ for all (i, j) ∈ E+. They
are said to be congruent if ∥pi − pj∥ = ∥qi − qj∥ for all i, j ∈ V .
Thus the framework (G, p) is rigid if there exists a neighborhood
Up of p ∈ RnN such that, for any q ∈ Up, if (G, p) and (G, q) are
equivalent, they are congruent.

Suppose that N is greater than n + 1. The framework (G, p) is
said to be infinitesimally rigid in Rn if rank(∂gG(p)/∂p) = nN −

n(n + 1)/2. Further (G, p) is said to be minimally rigid if it is rigid
and |E | = nN−n(n+1)/2 (Tay&Whiteley, 1985).Minimal rigidity
implies that no edge of G can be removedwithout losing rigidity of
(G, p) (Anderson et al., 2008).

Consider the frameworks that are pictorially represented in
Fig. 4. For the framework in Fig. 4(a), p is not unique up to
congruence even if all the edge lengths are fixed because p can be
deformed as shown by the dotted line. By adding an edge between
nodes 2 and 3, p becomes locally unique up to congruence as
depicted in Fig. 4(b). By adding one more edge between nodes 1
and 4, p becomes globally unique up to congruence.

6.1.2. Single-integrator case
Consider the following N single-integrator modeled agents in

n-dimensional space.

ṗi = ui, i = 1, . . . ,N, (25)

where pi ∈ Rn and ui ∈ Rn denote the position and control
input, respectively, of agent i with respect to a global coordinate
system g 

. We assume that the agents maintain their own local
coordinate systems without a common sense of orientation. Thus
orientations of the local coordinate systems are not aligned to
each other. Let the origin of the local coordinate system of agent i,
denoted by i , be located at pi as depicted in Fig. 3(b). By adopting
a notation in which superscripts are used to denote coordinate
systems, the agents (25) can be described as

ṗii = ui
i, i = 1, . . . ,N, (26)

where pii ∈ Rn and ui
i ∈ Rn denote the position and control input

of agent i with respect to i .
We further assume that the interaction graph G = (V, E)

is undirected and the agents sense relative positions of their
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if agent have ability to sense distance of the neighbors. 

So, what is the purpose of interaction of the agent to other ?
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neighbors with respect to their own local coordinate systems. To
be specific, the following variables are available to agents i,

piji := pij − pii ≡ pij, j ∈ Ni, (27)

where pij denote the position of agent j with respect to i .
Let p∗

∈ RnN be given. The desired formation for the agents (25)
is defined as the set of realizations that are congruent to p∗:

Ep∗ := {p ∈ RnN
: ∥pj − pi∥ = ∥p∗

j − p∗

i ∥, i, j ∈ V}.

Gradient control laws have been popularly used to achieve the
desired formation in distance-based control. For agent i, define a
local potential function φi : Rn(|Ni|+1)→R̄+ as

φi(pii, . . . , p
i
j, . . .) :=

kp
2


j∈Ni

γij

∥pij − pii∥


, (28)

where kp > 0 and γij : R → R̄+ is differentiable. A control law can
be designed as

ui
i = −∇pii

φi(pii, . . . , p
i
j, . . .)

= kp

j∈Ni

∂γij(∥pij − pii∥)

∂∥pij − pii∥

pij − pii
∥pij − pii∥

. (29)

Note that the control law (29) can be implemented in the local
coordinate systems of the agents by using only the measurements
(27), which is obvious because γij is the function of ∥pij − pii∥.

Though the gradient control law (29) is required to be
implemented in i  in practice, it is convenient to describe the
agents with respect to g 

for stability analysis. This can be done
based on a coordinate transformation, which leads to

ui = −∇piφi(pi, . . . , pj, . . .). (30)

Under the control law (30), the multi-agent system (25) can be
described as a gradient system. To see this, define a global potential
function φ : RnN

→ R̄+ as

φ(p) :=


(i,j)∈E+

γij(∥pij − pii∥). (31)

It follows from ∇piφi(pi, . . . , pj, . . .) = ∇piφ(p) that

ṗ = u = −∇φ(p). (32)

Obviously, it is required that the set of the critical points of φ(p)
include Ep∗ .

Krick, Broucke, and Francis (2008, 2009) have extensively
studied (32) with γij defined as

γij(∥pj − pi∥) := kp

∥pj − pi∥2

− ∥p∗

j − p∗

i ∥
22 , (33)

where kp > 0. Under the assumption that (G, p∗) is infinitesimally
rigid in R2, they have shown local asymptotic stability of Ep∗ with
respect to (32) based on the center manifold theory. Dörfler and
Francis (2009) have presented a Lyapunov stability analysis for (32)
with γij defined in (33) under the assumption that p∗ is minimally
rigid. To avoid the complexity arising from the non-compactness
of Ep∗ , they have described (32) by the variable e := (HT

+
⊗

I2)p ∈ R2M . Taking V (e) :=
M

i=1


∥ei∥2

− ∥e∗

i ∥
2

, where e∗

:=

(HT
+

⊗ I2)p∗, they have shown the negative-definiteness of V̇ in a
neighborhood of the desired formation. Further they have shown
that the gradient control law is indeed the optimal control lawwith
respect to a cost functional. Extending the result in Dörfler and
Francis (2009) to n-dimension, Oh and Ahn (2014a) have shown
that the infinitesimal rigidity of (G, p∗) is not crucial for local
asymptotic stability of Ep∗ . They have shown that if (G, p∗) is rigid
in Rn, Ep∗ is locally asymptotically stable with respect to (32) by
(a) Desired. (b) Undesired. (c) Undesired.

Fig. 5. Desired and undesired rectangular equilibrium formations.
Source: Taken from Summers et al. (2009).

exploiting a property of gradient systems presented in Lojasiewicz
(1970). While the potential function γij defined in (33) has been
popularly adopted in the literature, the following function has been
proposed in Dimarogonas and Johansson (2008, 2010):

γij(∥pj − pi∥) := kp


∥pj − pi∥2

− ∥p∗

j − p∗

i ∥
2
2

∥pj − pi∥2
, (34)

where kp > 0. Since the function (34) approaches infinity as
pi − pj → 0 for any (i, j) ∈ E+, the gradient control law based
on (34) ensures collision avoidance between neighboring agents
(Dimarogonas & Johansson, 2008). Dimarogonas and Johansson
(2008, 2010) have shown that the equilibrium set,

E ′

p∗ := {p ∈ RnN
: ∥pj − pi∥ = ∥p∗

j − p∗

i ∥, (i, j) ∈ E+},

is locally asymptotically stable and p always converges to E ′

p∗

asymptotically if and only if G is a tree under the assumption
that any agents are not collocated initially. In the case that G
has a cycle, the global stability property is not valid any more as
studied in Dimarogonas and Johansson (2009, 2010). While G has
been assumed to be a tree for the investigation of global stability
properties of E ′

p∗ inDimarogonas and Johansson (2008, 2010), it can
be shown that if (G, p∗) is rigid, Ep∗ is locally asymptotically stable
with respect to (32) under the gradient control law based on (34)
by using the result in Oh and Ahn (2014a).

Oh and Ahn (2011b,c,e) have proposed a distance-based
formation control law for the agents (25), which is aimed to allow
inter-agent distances to converge to desired values in somedesired
manner. They have shown local asymptotic stability of Ep∗ under
the proposed control law. The control law is related to the gradient
law in Dörfler and Francis (2009) and Krick et al. (2008, 2009) by
multiplication of a positive-definite matrix.

The set Ep∗ is not globally asymptotically stable with respect
to (32). This is obvious due to the existence of trivial undesired
equilibrium points of (32). For instance, if all the agents are located
at a common point, then the control inputs are zero or not defined.
Further, whenever all the agents are located in a common straight
line, they cannot escape from the line.

For undirected triangular formations, global stability properties
have been investigated. Let us consider three single-integrator
modeled agents moving in the plane. Assume that G is an
undirected complete graph and p∗

1, p
∗

2 , and p∗

3 are not collinear.
Oh and Ahn (2011e) have shown that if p1, p2, and p3 are not
collinear at the initial time, p asymptotically approaches to p∗

under a distance-based control law. A similar result for equilateral
triangular formations is found in Smith, Broucke, and Francis
(2006). The result in Smith et al. (2006) has been extended to
general directed formations (Cao, Anderson, Morse, & Yu, 2008;
Cao, Morse, Yu, Anderson, & Dasgupta, 2007, 2011; Cao, Yu, Morse,
Anderson, & Dasgupta, 2008).

According to Krick et al. (2009), there exist non-trivial unde-
sired equilibrium points for a four agent formation with an undi-
rected complete graph under the gradient control law based on
(33). Suppose that the desired formation for the agents is given by
the rectangular formation shape depicted in Fig. 5(a) with ∥p∗

2 −

p∗

1∥ = a and ∥p∗

4 − p∗

1∥ = b, where a > 0 and b > 0. By simu-
lation, Krick et al. (2009) have shown that p may converge to the
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rectangular formation shape depicted in Fig. 5(b) with ∥p3−p1∥ =
a2 + b2/3 and ∥p4 − p1∥ =


b2/3.

Motivated by the example in Krick et al. (2009), global stabil-
ity properties of an undirected four-agent formation have been
investigated in Anderson, Yu, Dasgupta, and Summers (2010); Das-
gupta, Anderson, Yu, and Summers (2011) and Summers, Yu, An-
derson, and Dasgupta (2009). Summers et al. (2009) have shown
that there exists another rectangular formation shape involving
undesired equilibria (Fig. 5(c)) and the equilibrium points asso-
ciated with the two undesired rectangular formations are saddle
and therefore unstable. Anderson et al. (2010) have shown that a
rectangular desired formation has two different associated unde-
sired rectangular equilibria and they are necessarily saddle points.
Dasgupta et al. (2011) have proved that every undesired equilib-
rium formation is unstable if the desired formation is given by a
rectangle. Though global stability properties have been revealed
for rectangular formations, as remarked in Anderson et al. (2010)
and Dasgupta et al. (2011), it is a still challenging open problem to
showwhether there exists an undesired, attractive equilibrium for
a general quadrilateral formation. In general, the global stability
properties of distance-based formations remain open. The major
difficulty arises from the fact that the set of critical points of φ(p)
are not analytically found.

While majority of the existing results have been focused on
only stability analysis, robustness against measurement errors in
distance-based setup has been studied in Belabbas, Mou, Morse,
and Anderson (2012). For distance-based undirected formation of
three-agents, Belabbas et al. (2012) have revealed that measure-
ments errors may cause the formation of the agents to oscillate
periodically.

6.1.3. Double-integrator case
Distance-based control of double-integrator modeled agents

has been studied in Oh and Ahn (2014a) and Olfati-Saber
and Murray (2002). Consider the following N double-integrator
modeled agents in n-dimensional space over a graph G:
ṗi = vi,
v̇i = ui,

i = 1, . . . ,N, (35)

where pi ∈ Rn, vi ∈ Rn, and ui ∈ Rn denote the position,
velocity, and control input, respectively, of agent i with respect to
g 

. Assume that each agent senses its own velocity and relative
positions of its neighbors with respect to its own local coordinate
system. Let p∗

∈ RnN be given. We define the desired formation
Ep∗,v∗ for the agents (35) as

Ep∗,v∗ := {[pT vT ]T ∈ R2nN
: ∥pj − pi∥ = ∥p∗

j − p∗

i ∥,

v = 0, i, j ∈ V}.

For the agents (35), Olfati-Saber and Murray (2002) have
proposed the following control law:

u = −∇pφ(p)− D(p, v), (36)

where φ is defined in (31) with γij in (33) and D(p, v) satisfies the
following properties: DT (p, v)v > 0 for all v ≠ 0 and D(p, 0) = 0.
They have shown local asymptotic stability of Ep∗,v∗ with respect
to (35) under the proposed control law based on the LaSalle’s
invariance principle.

Oh and Ahn (2014a) have also studied distance-based control of
the agents (35). Defining

ψ(p, v) :=
1
2


i∈V

∥vi∥
2
+

M
i=1

γij(∥pj − pi∥2),
(a) Not rigid. (b) Not persistent. (c) Persistent.

Fig. 6. Examples of directed frameworks.
Source: Taken from Hendrickx et al. (2007).

where γij is defined in (33), they have proposed a gradient control
law to obtain the following overall dynamics, which is a dissipative
Hamiltonian system:

ṗ = ∇vψ, (37a)
v̇ = −kv∇vψ − ∇pψ, (37b)

where kp > 0 and kv > 0. Based on the topological equivalence of
(37) to the following system,

ṗ = −∇pψ,

v̇ = −kv∇vψ,

they have shown local asymptotic stability of Ep∗,v∗ with respect to
(35) under the proposed control law.

6.2. Distance-based directed formation

In the case that the interaction graph of a multi-agent system
is directed in distance-based control, the requirement on the
interaction graph is characterized by persistence. Let G = (V, E)
be directed. Let pi ∈ Rn be assigned to V . The pair (G, p) is a
directed framework in Rn. Define E ′

:= {(i, j) : (j, i) ∈ E, (i, j) ∉

E}. The underlying undirected graph of G is defined as the pair
(V, E ∪ E ′).

Consider the directed frameworks shown in Fig. 6. First, the
framework ((V, E ∪ E ′), p) of the directed framework in Fig. 6(a)
is not rigid. Thus the corresponding interaction graph is not
appropriate for distance-based control. Second, ((V, E ∪ E ′), p) of
the directed framework in Fig. 6(b) is rigid; however, node2has too
much responsibility. Notice that nodes 1, 2, and 3 do not care about
the lengths of the edges (1, 2), (3, 2), and (4, 2), and thus node
2 is responsible for controlling the lengths of the three edges. In
case that agent 2 is moving in the plane, it cannot control the three
edge lengths independently. This shows that rigidity of ((V, E ∪

E ′), p) is not sufficient to satisfy the requirement on directed
interaction graphs in distance-based formation control. Third, the
responsibility for controlling edge lengths is well distributed in the
case of the directed framework in Fig. 6(c). That is, every node can
control its outgoing edge lengths.

This example roughly shows that directed interaction graphs
need to satisfy a condition related to rigidity and they need to
suitably distribute responsibility for controlling edge lengths to
nodes, which has been recognized in Baillieul and Suri (2003)
and then has been extensively studied in Hendrickx, Anderson,
Delvenne, and Blondel (2007). The requirement for interaction
graphs is characterized by graph persistence, which is reviewed in
the following.

6.2.1. Graph persistence
Let G = (V, E) be directed. Let pi ∈ Rn be the positions

assigned to the nodes. Suppose that, for the framework (G, p),
desired squared distances d∗

ij for all (i, j) ∈ E are given. The edge
(i, j) ∈ E is said to be active if ∥pi −pj∥2

= d∗

ij . The position pi ∈ Rn
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is said to be fitting for the desired squared distances if there is no
p′

i ∈ Rn such that the following strict inclusion holds:

{j ∈ Ni : ∥pi − pj∥2
= d∗

ij} ⊂ {j ∈ Ni : ∥p′

i − pj∥2
= d∗

ij}.

This means that pi is one of the best positions to maximize the
number of active outgoing edges of node i when the positions
of the other nodes remain unchanged. The framework (G, p) is
fitting for the desired squared distances if all the nodes of G are at
fitting positions for the desired squared distances. The persistence
of frameworks is defined as follows Hendrickx et al. (2007):

Definition 6.2 (Hendrickx et al., 2007). LetG = (V, E)be a directed
graph. A framework (G, p) is persistent if there exists ϵ > 0 such
that every realization q fitting for the distance set induced by p
and satisfying d(p, q) < ϵ, where d(p, q) = maxi∈V ∥pi − qi∥, is
congruent to p.

That is, if (G, p) is persistent, there exists a neighborhood of p
such that every realization q fitting to p is congruent to p in the
neighborhood. Analogous to minimal rigidity, (G, p) is minimally
persistent if it is persistent and no edge can be removed without
losing persistence (Hendrickx et al., 2007).

6.2.2. Distance-based control of persistent formations
In distance-based control of directed formations, research

efforts have focused on single-integrator modeled agents in the
plane under persistence assumption. An early work is found in
Baillieul and Suri (2003). For a single-integrator modeled agents
in the plane, they have proposed the following control law:

ui = kp

j∈Ni

(∥pj − pi∥ − ∥p∗

j − p∗

i ∥)(pj − pi). (38)

Further they have raised possibility of instability of directed
formations having a cyclic interaction topology in the presence
of sensor noises based on a cyclic triangular formation example,
which motivated further research on distance-based control of
directed formations. In addition, Baillieul and Suri (2003) have
provided three conditions under which a directed formation is
stably rigid. They call a formation stably rigid under a control law
if for any sufficiently small perturbation in the relative positions of
the agents, the control law steers them asymptotically back into
the prescribed formation. Eren, Whiteley, Anderson, Morse, and
Belhumeur (2005) have claimed that one of the three conditions
provided in Baillieul and Suri (2003) is redundant and shown that
a directed formation is stably rigid under a control law similar to
(38) if the following conditions hold: (i) the underlying undirected
graph of a directed formation is minimally rigid; (ii) the directed
formation graph is acyclic.

Acyclic persistent formations, which can be constructed by
Henneberg vertex addition sequence (Tay &Whiteley, 1985), have
been studied in Krick et al. (2009) and Oh and Ahn (2011a).
Krick et al. (2009) have shown local asymptotic stability of acyclic
persistent formations under a distance-based gradient law. Oh and
Ahn (2011a) have studied local stability based on input-to-state
stability (Khalil, 1996).

Control of minimally persistent formations has been studied in
Summers, Yu, Dasgupta, and Anderson (2011) and Yu, Anderson,
Dasgupta, and Fidan (2009). A directed framework (G, p) is
minimally persistent in R2 if and only if it is persistent and
|E | = 2|V| − 3 (Hendrickx et al., 2007). Any minimally persistent
formations belong to one of leader-first-follower (LFF), leader-
remote-follower (LRF), or co-leader types (Summers et al., 2011).
Yu et al. (2009) have studied control of LFF type formations of
single-integrator modeled agents in the plane under the following
(a) LFF type. (b) Co-leader type.

Fig. 7. Minimally persistent triangular formations.

Fig. 8. Rectangular formation with two cycles.
Source: Taken from Belabbas (2011).

control law, which has been proposed in Anderson, Dasgupta, and
Yu (2007):

ui = Ki(p̄i − pi), (39)

where Ki ∈ R2×2 and p̄i is the closest position such that ∥pj− p̄i∥ =

∥p∗

j − p∗

i ∥ for all j ∈ Ni. It has been shown that LFF formations
are locally asymptotically stable under (39) with suitably chosen
Ki. Summers et al. (2011) have studied local asymptotic stability
of LRF and co-leader type formations of single-integrator modeled
agents in the plane under control law (39).

Stability of LFF and co-leader type triangular formations (Fig. 7)
has been analyzed in Anderson, Yu, Dasgupta, and Morse (2007);
Cao, Anderson et al. (2008); Cao et al. (2007); Cao, Morse et al.
(2011) and Cao, Yu et al. (2008). In those studies, it has been shown
that p exponentially converges to Ep∗ provided that p1, p2, and p3
are initially not collinear. Anderson, Yu et al. (2007) have analyzed
global stability properties of co-leader type triangular formations
in the plane under a distance-based control law. Cao et al. (2007)
and Cao, Morse et al. (2011) have studied stability of co-leader
type triangular formations under a distance-based gradient law.
A similar result has been obtained in Cao, Anderson et al. (2008)
for LFF type triangular formations. Extending the result in Cao
et al. (2007); Cao, Morse et al. (2011) and Cao, Yu et al. (2008)
have studied global stability properties of co-leader type triangular
formations under a generalized control law. Dörfler and Francis
(2010) have shown that all invariant sets other than the desired
formation is unstable for a co-leader type triangular formation.
Further they have remarked that stability properties of a triangular
formation is not dependent upon whether the interaction graph is
undirected or directed. Park, Oh, and Ahn (2012) have proposed a
control law for a LFF type triangular formation to allow the agents
to escape from collinear positions.

Co-leader and LFF type triangular formation might be called
almost globally stabilizable (Belabbas, 2011) because stable
equilibrium set corresponds to the desired formation. In contrast,
Belabbas (2011) has revealed that the rectangular formation with
two cycles shown in Fig. 8 is not almost globally stabilizable using
twice differentiable control laws in the sense that there exists an
open set of undesirable but stable equilibrium. Further Belabbas
(2011) has conjectured that this behavior is a characteristic ofmore
general directed formations with cycles.

6.3. Other results in distance-based formation control

Given a reference trajectory, formation tracking problems have
been studied in a distance-based setup. The concept of formation
coordination via self-mobile localization has been proposed in
Ahn (2009), where a group of mobile agents cooperates with
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each other to move along the reference trajectory while mutually
acting as reference nodes. It has been shown that, when agents
can act as reference or mobile nodes via a coordination, they
can follow the reference trajectory under distance-based setups.
But, the overall problem was formulated in a sequential manner
without consideration of agents’ dynamics. In Oh and Ahn (2011a),
it has been shown that, when a leader agent moves slowly enough
following a desired trajectory, other agents could maintain the
relative formation with respect to the leader based on the input-
to-state stability theory. However, formation control error always
occurs unless the leader agent is stationary (Oh & Ahn, 2011a).
Such formation control error could be removed by allowing the
follower agents to estimate the velocity of the leader. Based on
this idea, Kang, Park, Lee, and Ahn (2014) have developed a
distance-based leader–follower type formation control strategy
that allows follower agents to estimate the velocity of the leader
agent by using relative displacement measurements based on an
adaptation method. Though Kang et al. (2014) have investigated
global stability properties of the formation of three-agents under
the proposed control strategy, general cases have yet to be studied.

In most of the existing works in distance-based formation
control, two-dimensional case has been dominantly considered.
There are a couple of works that have extended the analysis to
three- or higher dimensional cases. Oh and Ahn (2014a) have
designed a control law for distance-based undirected formations in
n-dimension; but it has been focused on local stability properties.
Park, Jeong, and Ahn (2013) have extended the existing result
on distance-based formation control of three-agents in two-
dimension to four-agent tetrahedral formation with equilateral
edges in three-dimension.

The formation scaling problems have been studied in
displacement-based setups as reviewed in Section 5.5.2. As an ex-
tension to distance-based setups, Park, Jeong, and Ahn (in press)
have proposed a control strategy that could steer the group of mo-
bile agents in the plane to achieve a specified scaling formation.
They could resize the formation only by changing the desired dis-
tance of leader edge, which connects the leader with the first-
follower in acyclic minimally persistent graph, without changing
the structures of the control law.

7. Summary and further issues

We reviewed the existing results by categorizing them into
positions-, displacement-, and distance-based. The categorization
clearly showed distinctions in the sensing capability, the interac-
tion topology, and the control objective of agents as summarized
in Table 1. Summary and discussions on further issues are provided
in the following.

7.1. Position-based control

In position-based control, agents sense their absolute positions
with respect to a global coordinate system and they actively
control the absolute positions to achieve their desired formation,
which is given by the desired positions for them. The desired
formation can be achieved without any interactions among the
agents under ideal conditions. Some interactions among the agents
have been introduced in the literature to consider practical issues
such as disturbances, actuator saturation, and so on. Different from
the displacement- and distance-based control, more realistic agent
models have been studied in position-based control. Position-
based control might be costly because agents are required to
carry more advanced sensing equipments such as GPS receivers
compared to displacement- and distance-based control. However,
it could provide effective solutions to practical formation control
applications.
7.2. Displacement-based control

In displacement-based control, agents are assumed to sense
relative positions of their neighbors with respect to a global
coordinate system. They actively control the displacements to
achieve their desired formation, which is specified by the desired
values for the displacements. It is assumed that the majority of
the agents do not sense their absolute positions with respect to
the global coordinate system. The requirement on the interaction
topology in displacement-based control is characterized by the
connectedness, the existence of spanning tree, the uniform
connectedness, etc.

Some future research directions in displacement-based control
can be summarized as follows. First, heterogeneous agents need
to be studied. Majority of the existing results have focused on
formation control of identical agents. In applications, multi-agent
systems may consist of heterogeneous agents due to various
reasons. Second, connectivity preservation and collision avoidance
issues are important in reality. Thus such issues need to be
addressed thoroughly.

7.3. Distance-based control

In distance-based formation control, agents sense relative
positions of their neighboring agents with respect to their local
coordinate systems under the assumption that the agents do
not have a common sense of orientation. They actively control
inter-agent distances to achieve their desired formation, which is
specified by the desired values for distances between any pair of
agents. Since only the inter-agent distances are actively controlled
in distance-based control, the interaction graph for the agents
is required to be rigid or persistent. A main advantage of this
control is that agents need less global information compared to
position- and displacement-based control. In general, multi-agent
systems under distance-based control laws are nonlinear, which
complicates stability analysis.

Future research directions in distance-based control can be
summarized as follows. First, global stability properties of general
rigid or persistent formations need to be investigated. Though
global stability properties of triangular formations have been
satisfactorily investigated, those of general rigid or persistent
formations have yet to be investigated. Further, even local stability
properties of general persistent formations have not been fully
revealed. Second, it is desirable to consider more practical agent
models. Majority of the existing results in this approach have
focused on single-integrator modeled agents in the plane. Though
such simple agents are beneficial for investigating fundamental
properties, more realistic agent models need to be studied to
enhance the practicality of distance-based control. Third, some
practical issues such as connectivity preservation and collision
avoidance need to be considered. Finally, formations with moving
leaders have been less studied; but formations in movement look
more natural andwill havemore practical applications. Thus, more
research efforts on distance-based formationswithmoving leaders
will be needed.

8. Other approaches

8.1. Flocking

It has been revealed that many collective behaviors discovered
in various fields are indeed based on relatively simple interactions
among individuals (Strogatz, 2003). Inspired by this, Reynolds
(1987) has proposed an agent model based on the following three
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basic rules, known as Reynolds rules:

• Cohesion: stay close to nearby neighbors;
• Separation: avoid collisions with nearby neighbors;
• Alignment: match velocity with nearby neighbors.

Many control laws have been proposed to achieve collective
behaviors in the literature. Majority of them can be viewed as
implementations of the Reynolds rules. As reviewed below, the
cohesion and the separation rules have been usually implemented
bymeans of an artificial potential function of inter-agent distances.
The alignment rule has been implemented by means of velocity
consensus of agents.

Attempting to encode the behavioral rules suggested by Okubo
(1986),which are similar to theReynolds rules, Leonard and Fiorelli
(2001) have proposed a framework for collective motion control
of double-integrator modeled agents based on artificial potential
functions and virtual leaders. In their framework, the artificial
potential functions define interaction force between neighboring
agents to maintain inter-agent distances properly. The virtual
leaders provide moving reference points that influence the agents
by means of additional potential functions. Leonard and Fiorelli
(2001) have illustrated various collective motions can be achieved
in their framework.

Tanner, Jadbabaie, and Pappas (2003a,b, 2007) have studied col-
lective motions of double-integrator modeled agents in the plane
based on the Reynolds rules. Assuming that the relative position
and velocity interaction topologies might be nonidentical, Tanner
et al. (2003a) have proposed a flocking control law consisting of
a gradient-based term and a velocity consensus term, which are
used for cohesion/separation and alignment, respectively, and ana-
lyzed stability under fixed topologies. Switching interaction topol-
ogy cases have been studied in Tanner et al. (2003b, 2007).

Based on the Reynolds rules, Olfati-Saber (2006) and Olfati-
Saber and Murray (2003) have addressed collective motions of
double-integrator modeled agents in n-dimensional space under
the assumption that the interaction topology of the agents is
dependent on relative positions. Under the proposed control law,
Olfati-Saber (2006) has shown that inter-agent distance errors
asymptotically converge to zero, the velocities of the agents
converge to a common vector, and no inter-agent collisions occur.
Further Olfati-Saber (2006) and Olfati-Saber and Murray (2003)
have proposed an obstacle avoidance scheme.

Cohesive behavior of single-integrator modeled agents has
been studied in Gazi and Passino (2003) with emphasis on the
asymptotic convergence region analysis and in Dimarogonas and
Kyriakopoulos (2008a) with consideration of connectivity preser-
vation. Dispersive behavior of single-integrators in a bounded
plane has been studied in Dimarogonas and Kyriakopoulos (2009).

8.2. Estimation based formation control

For single-integrator modeled agents, Oh and Ahn (2011d,
2013) have proposed a position estimation law as
˙̂pi = ui + ko


j∈Ni

wij

(p̂j − p̂i)− (pj − pi)


,

where ko > 0 and p̂i denote estimated positions with respect to
a global coordinate system. Defining p̃i := pi − p̂i, the estimation
error dynamics can be arranged as

˙̃p = −ko(L ⊗ In)p̃. (40)

Then p̂ asymptotically converges to p up to translation if G is
uniformly connected. Based on the estimated positions, Oh and
Ahn (2011d, 2013) have proposed a formation control law, which
allows the agents to actively control their positions. Further they
have applied the proposed control scheme to unicycles. This
control scheme allows individual agents to actively control their
positions while it has the same requirement on the interaction
topology and the sensing capability as a typical displacement-
based control scheme.

Similarity between (13) and (40) shows duality between
formation control and localization. It is well known that there
is duality between controllability and observability of a linear
time-invariant system (Chen, 1998). Duality between formation
control and localization has been investigated in Tuna (2008) and
Zhang et al. (2011). For agents (18) over G, consider the following
localization law:
˙̂xi = Ax̂i + Bui − F


j∈Ni

wij(ŷi − ŷj − yi + yj),

where x̂i denote estimated states. Define x̃ := x − x̂ to obtain

˙̃x = (IN ⊗ A − L ⊗ FC)x̃. (41)

Let G′ be the reversed graph G (Zhang et al., 2011). Consider the
following agents over G′:

ẋi = AT xi + ui, i = 1, . . . ,N.

Let ui = −F TBT 
j∈N ′

i
a′

ij(xi − xj). Then we obtain

ėx = (IN ⊗ AT
− LT ⊗ FBT )ex. (42)

In view of (41) and (42), localization is achieved for (A, C) by F over
G if and only if the desired formation is achieved for (AT , BT ) by F T

over G′ (Zhang et al., 2011). This shows duality between formation
control and localization in displacement-based approach. Tuna
(2008) has also pointed out such duality.

Formation control strategies based on orientation alignment
are found in Oh and Ahn (2011d, 2012, 2014b). In those studies,
agents are allowed to align the orientation of their local coordinate
systems by exchanging their relative angle measurements. Based
on the orientation alignment, Oh and Ahn (2011d, 2014b) have
proposed a control law, which allows agents to actively control
relative positions of their neighbors while imposing the same
requirement on the interaction topology and the sensing capability
as a typical distance-based control scheme. The formation control
strategy presented in Oh and Ahn (2014b) can be utilized for
network localization, which shows duality between formation
control and network localization. Oh and Ahn (2012) have
combined the orientation alignment with the position estimation
(Oh & Ahn, 2011d, 2013) to allow agents to actively control their
positions.

8.3. Pure distance-based control

In distance-based control, agents sense relative positions of
their neighbors though only inter-agent distances are actively
controlled, i.e., the controlled variables are not identical to the
sensed ones. Motivated by this, Anderson and Yu (2011) and
Cao, Yu, and Anderson (2011) have proposed a formation shape
control scheme based only on inter-agent distance measurements.
Anderson and Yu (2011) have provided a control scheme that
allows agents to infer relative positions of their neighbors by using
only inter-agent distances. In their problem setup, each agent
senses distances of its neighbors and exchanges the sensed values
with its neighbors via communication. In Cao, Yu et al. (2011),
agents are partitioned into at most four subgroups and agents
belonging to one of the subgroups estimate relative positions of
their neighbors by some means and move to reduce the value
of their local potential functions while any agents belonging to
the other subgroups remain stationary. Cao, Yu et al. (2011) have
shown that inter-agent distances converge to the desired values by
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repeating the procedure cyclically with respect to the subgroups if
the desired formation is minimally rigid.

8.4. Angle-based control

Though position, displacement, and distance measurements
have been dominantly used, bearing measurements can be used
for multi-agent formation control. Basiri et al. (2010) have stud-
ied a formation control based on bearing measurements for three
agents on the plane. The desired formation is specified by α∗

=

[α∗

1 α∗

2 α∗

3 ]
T , where α∗

i are the desired angle subtended at
agents i by the other two agents. Assuming that agents i sense αi,
Basiri et al. (2010) have shown that α∗ is globally asymptotically
stable under their proposed control law. The result in Basiri et al.
(2010) and Bishop (2011b) has been applied to three agents on
a sphere (Bishop & Basiri, 2010) and four agents (Bishop, 2011a).
Generalizing the previous results, Bishop et al. (2011) have pro-
posed a gradient control law based on inter-agent bearing mea-
surements under the assumption that agents share a common
sense of orientation. Eren (2012) has studied angle-based triangu-
lar formation consisting of two leader and one follower unicycles.
Bishop, Summers, and Anderson (2012) have proposed a control
strategy based on a mix of angle and distance measurements for
three agents on the plane. Trinh, Oh, and Ahn (2014) have further
developed angle-based control for directed acyclic formationswith
three leader agents. They have showed that the desired formation
with specified locations could be achieved using only bearingmea-
surements via the input-to-state stability theory.

8.5. Containment control

In containment control problems, follower agents are driven
into the convex hull spanned by leader agents based on consensus
protocol while leader agents behave autonomously. By this way,
the leader agents can drive the follower agents to specified target
destination. This approach is practically advantageous because
follower agents do not require expensive sensors. Containment
control has been studied for single-integrators with fixed (Ferrari-
Trecate, Egerstedt, Buffa, & Ji, 2006; Ji, Ferrari-Trecate, Egerstedt,
& Buffa, 2008), switching (Cao & Ren, 2009), and state-dependent
interaction topology (Chen, Ren, & Lin, 2010), double-integrators
(Cao, Stuart, Ren, & Meng, 2011), unicycles (Dimarogonas,
Egerstedt, & Kyriakopoulos, 2006), Euler–Lagrangian systems
(Dimarogonas, Tsiotras, & Kyriakopoulos, 2009; Mei, Ren, & Ma,
2011;Meng, Ren, & You, 2010), and general linear systems (Li, Ren,
Liu, & Fu, 2013).

8.6. Cyclic pursuit

In cyclic pursuit problems, agent i pursues agent i+1moduloN
in an N-agent group. Convergence properties of single-integrators
by cyclic pursuit is found in Lin, Broucke, and Francis (2004). Cyclic
pursuit of unicycles has been studied in Marshall, Broucke, and
Francis (2004). They have revealed that the equilibrium formation
for the pursuit system is given by generalized regular polygon
under their proposed control law and provided a certain condition
under which the equilibrium formation is locally asymptotically
stable. Further cyclic pursuit has been applied to rendezvous
problems (Sinha & Ghose, 2006; Smith, Broucke, & Francis, 2005)
and target capturing in three-dimensional space (Kim & Sugie,
2007). In addition to those works, Wang, Xie, and Cao (2013)
have studied formation control of single-integrators on a circle
assuming that the desired formation is encoded by the relative
angles between neighboring agents, and Lee, Lee, Park, Oh, andAhn
(2013) have considered distance-based cyclic polygon formations
of nonholonomic dynamics, where a sliding mode technique is
employed.
9. Conclusion

In this paper, we presented a brief survey of multi-agent
formation control. By categorizing the existing results into the
position-, displacement-, and distance-based control,we discussed
fundamental problem formulations and summarized distinctions
between control schemes. This survey is far from an exhaustive
literature review. Many important results might be missed in
this paper though we expect that this survey provides a helpful
overview of formation control.
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