% $ biblatex auxiliary file $ % $ biblatex bbl format version 3.1 $ % Do not modify the above lines! % % This is an auxiliary file used by the 'biblatex' package. % This file may safely be deleted. It will be recreated as % required. % \begingroup \makeatletter \@ifundefined{ver@biblatex.sty} {\@latex@error {Missing 'biblatex' package} {The bibliography requires the 'biblatex' package.} \aftergroup\endinput} {} \endgroup \datalist[entry]{none/global//global/global} \entry{Parker2003}{article}{} \name{author}{1}{}{% {{hash=PL}{% family={Parker}, familyi={P\bibinitperiod}, given={Lynne}, giveni={L\bibinitperiod}, }}% } \strng{namehash}{PL1} \strng{fullhash}{PL1} \field{labelnamesource}{author} \field{labeltitlesource}{title} \verb{doi} \verb 10.1007/BF02480877 \endverb \field{pages}{1\bibrangedash 5} \field{title}{Current research in multirobot systems} \field{volume}{7} \field{journaltitle}{Artificial Life and Robotics} \field{month}{03} \field{year}{2003} \endentry \entry{Guanghua2013}{inproceedings}{} \name{author}{4}{}{% {{hash=GW}{% family={Guanghua}, familyi={G\bibinitperiod}, given={Wang}, giveni={W\bibinitperiod}, }}% {{hash=DL}{% family={Deyi}, familyi={D\bibinitperiod}, given={Li}, giveni={L\bibinitperiod}, }}% {{hash=WG}{% family={Wenyan}, familyi={W\bibinitperiod}, given={Gan}, giveni={G\bibinitperiod}, }}% {{hash=PJ}{% family={Peng}, familyi={P\bibinitperiod}, given={Jia}, giveni={J\bibinitperiod}, }}% } \strng{namehash}{GW+1} \strng{fullhash}{GWDLWGPJ1} \field{labelnamesource}{author} \field{labeltitlesource}{title} \verb{doi} \verb 10.1109/ISDEA.2012.316 \endverb \field{isbn}{978-1-4673-4893-5} \field{pages}{1335\bibrangedash 1339} \field{title}{Study on Formation Control of Multi-Robot Systems} \field{month}{01} \field{year}{2013} \endentry \entry{6889491}{inproceedings}{} \name{author}{3}{}{% {{hash=WX}{% family={{Wang}}, familyi={W\bibinitperiod}, given={X.}, giveni={X\bibinitperiod}, }}% {{hash=YZ}{% family={{Yan}}, familyi={Y\bibinitperiod}, given={Z.}, giveni={Z\bibinitperiod}, }}% {{hash=WJ}{% family={{Wang}}, familyi={W\bibinitperiod}, given={J.}, giveni={J\bibinitperiod}, }}% } \keyw{dynamic programming;mobile robots;multi-robot systems;neurocontrollers;optimal control;predictive control;quadratic programming;recurrent neural nets;torque control;trajectory control;model predictive control approach;multirobot formation control problem;simplified dual neural network;leader-follower scheme;desired trajectory tracking;dynamic quadratic optimization problem;one-layer recurrent neural network;optimal control input;Vectors;Lead;Wheels;Neural networks;Robot kinematics;Mathematical model} \strng{namehash}{WXYZWJ1} \strng{fullhash}{WXYZWJ1} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{booktitle}{2014 International Joint Conference on Neural Networks (IJCNN)} \verb{doi} \verb 10.1109/IJCNN.2014.6889491 \endverb \field{issn}{2161-4393} \field{pages}{3161\bibrangedash 3166} \field{title}{Model predictive control of multi-robot formation based on the simplified dual neural network} \field{year}{2014} \warn{\item Invalid format of field 'month'} \endentry \entry{ELFERIK2016117}{article}{} \name{author}{3}{}{% {{hash=FSE}{% family={Ferik}, familyi={F\bibinitperiod}, given={Sami\bibnamedelima El}, giveni={S\bibinitperiod\bibinitdelim E\bibinitperiod}, }}% {{hash=NMT}{% family={Nasir}, familyi={N\bibinitperiod}, given={Mohammad\bibnamedelima Tariq}, giveni={M\bibinitperiod\bibinitdelim T\bibinitperiod}, }}% {{hash=BU}{% family={Baroudi}, familyi={B\bibinitperiod}, given={Uthman}, giveni={U\bibinitperiod}, }}% } \keyw{Cluster space, Behavioral control, Fuzzy adaptive, Multi-robots} \strng{namehash}{FSENMTBU1} \strng{fullhash}{FSENMTBU1} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{% Cooperation between autonomous robot vehicles holds several promising advantages like robustness, adaptability, configurability, and scalability. Coordination between the different robots and the individual relative motion represent both the main challenges especially when dealing with formation control and maintenance. Cluster space control provides a simple concept for controlling multi-agent formation. In the classical approach, formation control is the unique task for the multi-agent system. In this paper, the development and application of a novel Behavioral Adaptive Fuzzy-based Cluster Space Control (BAFC) to non-holonomic robots is presented. By applying a fuzzy priority control approach, BAFC deals with two conflicting tasks: formation maintenance and target following. Using priority rules, the fuzzy approach is used to adapt the controller and therefore the behavior of the system, taking into accounts the errors in the formation states and the target following states. The control approach is easy to implement and has been implemented in this paper using SIMULINK real-time platform. The communication between the different agents and the controller is established through Wi-Fi link. Both simulation and experimental results demonstrate the behavioral response where the robot performs the higher priority tasks first. This new approach shows a great performance with a lower control signal when benchmarked with previously known results in the literature.% } \verb{doi} \verb https://doi.org/10.1016/j.asoc.2016.03.018 \endverb \field{issn}{1568-4946} \field{pages}{117 \bibrangedash 127} \field{title}{A Behavioral Adaptive Fuzzy controller of multi robots in a cluster space} \verb{url} \verb http://www.sciencedirect.com/science/article/pii/S1568494616301272 \endverb \field{volume}{44} \field{journaltitle}{Applied Soft Computing} \field{year}{2016} \endentry \entry{YOSHIOKA20085149}{article}{} \name{author}{2}{}{% {{hash=YC}{% family={Yoshioka}, familyi={Y\bibinitperiod}, given={Chika}, giveni={C\bibinitperiod}, }}% {{hash=NT}{% family={Namerikawa}, familyi={N\bibinitperiod}, given={Toru}, giveni={T\bibinitperiod}, }}% } \strng{namehash}{YCNT1} \strng{fullhash}{YCNT1} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{% This paper deals with formation control strategies based on Virtual Structure (VS) for multi-vehicle systems. We propose several control laws for networked multi-nonholonomic vehicle systems in order to achieve VS consensus, VS Flocking and VS Flocking with collision-avoidance. First, Virtual Vehicle for the feedback linearization is considered, and we propose VS consensus and Flocking control laws based on a virtual structure and consensus algorithms. Then, VS Flocking control law considering collision avoidance is proposed and its asymptotical stability is proven. Finally, simulation and experimental results show effectiveness of our proposed approaches.% } \verb{doi} \verb https://doi.org/10.3182/20080706-5-KR-1001.00865 \endverb \field{issn}{1474-6670} \field{note}{17th IFAC World Congress} \field{number}{2} \field{pages}{5149 \bibrangedash 5154} \field{title}{Formation Control of Nonholonomic Multi-Vehicle Systems based on Virtual Structure} \verb{url} \verb http://www.sciencedirect.com/science/article/pii/S1474667016397609 \endverb \field{volume}{41} \field{journaltitle}{IFAC Proceedings Volumes} \field{year}{2008} \endentry \entry{OH2015424}{article}{} \name{author}{3}{}{% {{hash=OKK}{% family={Oh}, familyi={O\bibinitperiod}, given={Kwang-Kyo}, giveni={K\bibinithyphendelim K\bibinitperiod}, }}% {{hash=PMC}{% family={Park}, familyi={P\bibinitperiod}, given={Myoung-Chul}, giveni={M\bibinithyphendelim C\bibinitperiod}, }}% {{hash=AHS}{% family={Ahn}, familyi={A\bibinitperiod}, given={Hyo-Sung}, giveni={H\bibinithyphendelim S\bibinitperiod}, }}% } \keyw{Formation control, Position-based control, Displacement-based control, Distance-based control} \strng{namehash}{OKKPMCAHS1} \strng{fullhash}{OKKPMCAHS1} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{% We present a survey of formation control of multi-agent systems. Focusing on the sensing capability and the interaction topology of agents, we categorize the existing results into position-, displacement-, and distance-based control. We then summarize problem formulations, discuss distinctions, and review recent results of the formation control schemes. Further we review some other results that do not fit into the categorization.% } \verb{doi} \verb https://doi.org/10.1016/j.automatica.2014.10.022 \endverb \field{issn}{0005-1098} \field{pages}{424 \bibrangedash 440} \field{title}{A survey of multi-agent formation control} \verb{url} \verb http://www.sciencedirect.com/science/article/pii/S0005109814004038 \endverb \field{volume}{53} \field{journaltitle}{Automatica} \field{year}{2015} \endentry \entry{Oh2014}{article}{} \name{author}{2}{}{% {{hash=OKK}{% family={Oh}, familyi={O\bibinitperiod}, given={Kwang-Kyo}, giveni={K\bibinithyphendelim K\bibinitperiod}, }}% {{hash=AHS}{% family={Ahn}, familyi={A\bibinitperiod}, given={Hyo-Sung}, giveni={H\bibinithyphendelim S\bibinitperiod}, }}% } \keyw{formation control, distance-based control, graph rigidity, Hamiltonian systems, gradient systems} \strng{namehash}{OKKAHS1} \strng{fullhash}{OKKAHS1} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{% SUMMARYWe study the local asymptotic stability of undirected formations of single-integrator and double-integrator modeled agents based on interagent distance control. First, we show that n-dimensional undirected formations of single-integrator modeled agents are locally asymptotically stable under a gradient control law. The stability analysis in this paper reveals that the local asymptotic stability does not require the infinitesimal rigidity of the formations. Second, on the basis of the topological equivalence of a dissipative Hamiltonian system and a gradient system, we show that the local asymptotic stability of undirected formations of double-integrator modeled agents in n-dimensional space is achieved under a gradient-like control law. Simulation results support the validity of the stability analysis. Copyright © 2013 John Wiley \& Sons, Ltd.% } \verb{doi} \verb 10.1002/rnc.2967 \endverb \verb{eprint} \verb https://onlinelibrary.wiley.com/doi/pdf/10.1002/rnc.2967 \endverb \field{number}{12} \field{pages}{1809\bibrangedash 1820} \field{title}{Distance-based undirected formations of single-integrator and double-integrator modeled agents in n-dimensional space} \verb{url} \verb https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.2967 \endverb \field{volume}{24} \field{journaltitle}{International Journal of Robust and Nonlinear Control} \field{year}{2014} \endentry \entry{Rozenheck2015}{inproceedings}{} \name{author}{3}{}{% {{hash=RO}{% family={{Rozenheck}}, familyi={R\bibinitperiod}, given={O.}, giveni={O\bibinitperiod}, }}% {{hash=ZS}{% family={{Zhao}}, familyi={Z\bibinitperiod}, given={S.}, giveni={S\bibinitperiod}, }}% {{hash=ZD}{% family={{Zelazo}}, familyi={Z\bibinitperiod}, given={D.}, giveni={D\bibinitperiod}, }}% } \keyw{gradient methods;multi-agent systems;PI control;velocity control;proportional-integral controller;distance-based formation tracking;multiagent formation control problem;additional velocity reference command;interagent distance constraints;gradient formation controller;formation error dynamics;steady-state formation error;Stability analysis;Steady-state;Symmetric matrices;Aerodynamics;Jacobian matrices;Numerical stability;Asymptotic stability} \strng{namehash}{ROZSZD1} \strng{fullhash}{ROZSZD1} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{booktitle}{2015 European Control Conference (ECC)} \verb{doi} \verb 10.1109/ECC.2015.7330781 \endverb \field{pages}{1693\bibrangedash 1698} \field{title}{A proportional-integral controller for distance-based formation tracking} \field{year}{2015} \warn{\item Invalid format of field 'month'} \endentry \entry{CORREIA20127}{article}{} \name{author}{3}{}{% {{hash=CMD}{% family={Correia}, familyi={C\bibinitperiod}, given={Mariane\bibnamedelima Dourado}, giveni={M\bibinitperiod\bibinitdelim D\bibinitperiod}, }}% {{hash=GA}{% family={Gustavo}, familyi={G\bibinitperiod}, given={André}, giveni={A\bibinitperiod}, }}% {{hash=CS}{% family={Conceição}, familyi={C\bibinitperiod}, given={Scolari}, giveni={S\bibinitperiod}, }}% } \keyw{Models, Friction, Parameter estimation, Autonomous mobile robots} \strng{namehash}{CMDGACS1} \strng{fullhash}{CMDGACS1} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{% This paper presents a model of a three-wheeled omnidirectional robot including a static friction model. Besides the modeling is presented a practical approach in order to estimate the coefficients of coulomb and viscous friction, which used sensory information about force and velocity of the robot's center of mass. The proposed model model has the voltages of the motors as inputs and the linear and angular velocities of the robot as outputs. Actual results and simulation with the estimated model are compared to demonstrate the performance of the proposed modeling.% } \verb{doi} \verb https://doi.org/10.3182/20120905-3-HR-2030.00002 \endverb \field{issn}{1474-6670} \field{note}{10th IFAC Symposium on Robot Control} \field{number}{22} \field{pages}{7 \bibrangedash 12} \field{title}{Modeling of a Three Wheeled Omnidirectional Robot Including Friction Models} \verb{url} \verb http://www.sciencedirect.com/science/article/pii/S1474667016335807 \endverb \field{volume}{45} \field{journaltitle}{IFAC Proceedings Volumes} \field{year}{2012} \endentry \enddatalist \endinput