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Abstract— In this paper, we deal with formation stabilization
of a group of mobile agents with orientation control. The
proposed method is to combine usual distance-based control
with displacement-based control so that the shape of the
formation is dominantly controlled by distance-based control,
and the orientation of the whole formation is forced to converge
to the desired orientation by the additional displacement control
input. We assume that the network topology is represented
by an undirected graph and that the motion of each agent
is simplified to a single-integrator model. We provide stability
analysis for the desired formation shape, and four-agent systems
are explored to understand asymptotic convergence of the
agents. Simulation results are also included to verify our results.

I. INTRODUCTION

Recent publications on distance-based formation control,
[1], [2], are mainly focused on the formation shape control
problems [3]–[7]. The reason why they deal with only the
shape control problems is that the constraints for the desired
formation are related only to the inter-agent distances which
do not contain orientation information. For example, if we
have two agents in the plane, a distance constraint between
the agents determines a segment formation that can be
freely positioned on the plane with a rotational freedom in
addition to two independent translational freedoms. On the
other hand, the constraints in displacement-based formation
control, [2], [8], are related to relative positions, so the
desired formation shape has only the translational freedoms.

Compared to the displacement-based control strategy, al-
though distance-based control cannot maneuver the orienta-
tion of the formation, it has an advantage that each agent
is not required to have a common sense of the north, i.e.,
the local reference frames of the agents do not need to be
aligned. Thus, in real world implementation, each agent is
not required to be equipped with the compass in terms of
the formation control algorithm.

Oh and Ahn use the displacement-based formation control
algorithm accompanied by an orientation-alignment law [9].
Unlike usual displacement-based control in the literature, the
method proposed in [9] does not require that the local ref-
erence frames of the agents are aligned from the beginning.
Under certain condition on the initial orientation differences,
the proposed orientation-alignment law makes the orientation
of each agent converge to a common orientation which is not
necessarily the orientation of the global reference frame. On
the other hand, Cortés uses a sequential initialization algo-
rithm to orient all reference frames [10], and he establishes
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global formation-shape stabilization with sensing networks
having a globally reachable vertex.

Instead of changing the local reference frames, we propose
an approach combining the distance- and displacement-based
formation control algorithms to achieve the desired shape and
the desired orientation of the formation. A fundamental strat-
egy is to use the distance-based formation control algorithm
for shape stabilization, and we include additional displace-
ment control terms for only one edge. Then, the displacement
control terms perturb the agents so that the relative position
corresponding to the edge converges to the desired relative
position while the formation shape approaches the desired
shape by virtue of the distance control terms.

In the literature, it is known that distance-based formation
control with undirected graphs is vulnerable to non-vanishing
perturbations [11]–[13]. Belabbas, Mou, Sun and their col-
leagues show that distance-based control with distance mis-
matches could result in formations moving permanently.
However, we assume that all measurements are correct, and
there are no distance mismatches as the authors of the former
literature, e.g., [14]–[16], did. The problems which may be
caused by non-vanishing perturbations could be dealt with
in the future research topics.

Beyond the robustness issues mentioned in [11]–[13],
there are many other research topics relevant to formations of
mobile agents. For example, flocking [17], formation resizing
[18], [19], leader tracking [20], containment control [21],
and etc. However, we are interested in shape and orientation
control only, so the main content of this paper does not cover
those topics.

The rest of the paper is organized as follows. In Sec-
tion II, we provide basic notation and some definitions used
throughout the paper. The concept of graph rigidity and its
relevance to distance-based formation control is mentioned,
and the control law induced from the proposed potential
function is introduced. In Section III, we provide stability
analysis for the desired equilibrium set. On the basis of
the results in Section III, we explore four-agent systems
to understand asymptotic convergence of the agents to the
desired formation shape in Section IV. We also provide
simulation results to validate our results in Section V. Finally,
we summarize our results in Section VI.

II. PRELIMINARIES

In this section, we provide notation and some definitions
used in the rest of the paper.

• Rn: n-dimensional Euclidean space
• Rm×n: the set of all m by n real matrices
• |S|: the number of the elements of the finite set S
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• In: the n by n identity matrix
• 1n ∈ Rn: the vector with all entries equal to 1
• 0n ∈Rn, 0m×n ∈Rm×n: the zero matrices with appropri-

ate size.
• A⊗B: the Kronecker product of matrices A and B.
• ∥x∥: the Euclidean norm of a vector x.
• x⊥ ∈R2: the vector obtained by rotating x ∈R2 by π/2.

A. Notation for Graphs, and Graph Rigidity

Let G = (V,E) be a graph representing the relationships
of the agents. The set V = {1, . . . ,N} with N ≥ 2 denotes
the set of all vertices of G, which also means the set of all
indices of the agents. We say that an edge (i, j) is in E if
agent i and j are supposed to control the distance between
them. In this case, we call i a neighbor of j, and vice versa.
For convenience, if i and j are neighbors of each other, we
use (min{i, j},max{i, j}) instead of (max{i, j},min{i, j}) to
represent the edge connecting i and j, and we define M = |E|
to denote the cardinality of E . From the proposed definition
of edge, any self-loop is not allowed, and the graph is simple,
i.e., (i, i) /∈ E for all i ∈ V , and (i, j) is the unique edge
connecting i and j for all (i, j)∈ E . We use pi(t) to represent
the position vector of vertex (agent) i in R2 at time t for all
i ∈ V . Then a vector defined by p = [p⊤

1 . . . p⊤
N ]

⊤ ∈ R2N

is called a realization of G. We call the pair of G and
its realization p, denoted by (G,p), a framework. For two
realizations p and p′ of the same graph G, (G,p) and (G,p′)
are said to be equivalent if ∥pi −p j∥ = ∥p′

i −p′
j∥ for all

(i, j)∈ E . Two realizations p and p′ are said to be congruent
if ∥pi −p j∥= ∥p′

i −p′
j∥ for all i, j ∈ V .

We define the rigidity function of (G,p) as the function
r : R2N → RM given by

rG(p) = [. . . ∥pi −p j∥2 . . .]⊤, (i, j) ∈ E ,

where the ith component of rG corresponds to the ith edge
of G.

Definition 1 (Asimow and Roth (1978), [22]): Let G be
a graph with N vertices and its realization p. Let K be the
complete graph with the same vertex set of G. The framework
(G,p) is rigid in R2 if there exists a neighborhood U of p
in R2N such that

r−1
G (rG(p))∩U = r−1

K (rK(p))∩U .

Intuitively, (G,p) is rigid in R2 if there exists a neighbor-
hood U of p in R2N such that, for any p′ ∈ U , equivalence
of (G,p) and (G,p′) implies congruence of p and p′ [2]. In
Definition 1, if we can choose U =R2N , then the framework
is globally rigid [23].

Consider a matrix RG ∈ RM×(2N) defined by

RG(p) =
1
2

∂rG
∂p

.

We call RG the rigidity matrix of (G,p). If there is no
confusion, we remove the subscript G for convenience.

Definition 2 (Asimow and Roth (1979), [24]): With the
same notation used in Definition 1, (G,p) is infinitesimally

rigid in R2 if the null space of R(p) is equal to the tangent
space to r−1

K (rK(p)) at p.
There are subtle differences between rigidity and infinites-

imal rigidity. Depending on the realization p of G, (G,p)
may not be infinitesimally rigid even if it is rigid. However,
if (G,p) is infinitesimally rigid, then it is rigid [24].

There is a useful theorem providing a necessary and
sufficient condition to determine whether or not a given
framework is infinitesimally rigid.

Theorem 1 ([24], [25]): A framework (G,p) with N ≥ 2
vertices is infinitesimally rigid in R2 if and only if the rank
of the rigidity matrix of (G,p) is equal to 2N −3.

The relevance between graph rigidity and the distance
constraints for formations is explained in [1]. Although using
rigidity is enough to characterize the unique formation shape
in a local sense, we need infinitesimal rigidity for further
analysis. Thus we assume that the framework representing
the desired formation shape is infinitesimally rigid. For
the results established on the basis of rigidity assumption,
refer to [26], which deals with the distance-based formation
control problems of rigid frameworks.

For later use, we invoke a proposition on the loss of
infinitesimal rigidity.

Lemma 1: Consider a graph G with N ≥ 3 and its real-
ization p. Suppose that G has a vertex which has exactly two
neighbors, and let i denote the vertex. Let j and k ̸= j denote
the neighbors of i. If (pi − p j) and (pi − pk) are linearly
dependent, then (G,p) is not infinitesimally rigid in R2.

Proof: Suppose that (G,p) is infinitesimally rigid. Then,
from Theorem 1, the nullity of R(p) is equal to 3. If all of
the vertices are not collocated at the same point, then a basis
of the null space of R(p) is given by

B =

1N ⊗
[

1
0

]
, 1N ⊗

[
0
1

]
,

p⊥
1
...

p⊥
N


 .

If all of the vertices are collocated, then obviously the
framework is not infinitesimally rigid, so we discard the
possibility of collocation. The basis vectors in B correspond
to the trivial infinitesimal motions (two independent trans-
lations and one rotation) [25]. If we can find a nontrivial
infinitesimal motion, we can reach a contradiction. Such a
nontrivial infinitesimal motion v is given by

v =


[
0⊤2(i−1) 1⊤2 0⊤2(N−i)

]⊤
, if pi = p j = pk,

[
0⊤2(i−1)

[
(pi −pl)

⊥]⊤ 0⊤2(N−i)

]⊤
, otherwise,

where l ∈ {m ∈ { j,k} | pi −pm ̸= 02}. Note that, for in-
finitesimal rigidity, at least (2N−3) row vectors of R(p) must
not be the zero vector. In that case, v is linearly independent
from the vectors in B. Thus, the nullity of R(p) exceeds
3, which means that (G,p) is not infinitesimally rigid. Note
that R(p)v = 0M from the fact that (pi −p j) and (pi −pk)
are linearly dependent, and i has exactly two neighbors.
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B. Equations of Motion

We assume that each agent follows the integrator model
given by

ṗi = ui, ∀i ∈ V.

Thus, we can assign any piecewise continuous and bounded
velocity vector to each agent. Let p̄∈R2N be a representative
realization of the desired formation shape. We use ei j to
denote the squared-distance errors defined by

ei j = ∥pi −p j∥2 −∥p̄i − p̄ j∥2, ∀(i, j) ∈ E ,
e = [. . . ei j . . .]⊤ ∈ RM.

For convenience, we assume that (1,2) ∈ E without loss of
generality. If (1,2) /∈ E , we can reorder the indices of the
agents so that (1,2) ∈ E . Then, consider a potential function
V : R2N → R given by

V (p) = ϕ(p)+φ(p),

where

ϕ(p) =
1
4

e⊤e, φ(p) =
1
2

p̃⊤
12p̃12, (1)

and p̃12 = (p1 − p2)− (p̄1 − p̄2). Hence, V is obtained by
modifying the potential functions used in [14], [15], [27]
with the additional term of the displacement error.

In usual distance-based formation control found in [14],
[15], φ is equal to zero, and the agents are controlled so
that V → 0 as p(t) approaches a point that is congruent
to p̄. However, that does not answer whether or not the
orientation of the formation also approaches the orientation
of the desired formation shape. In that regard, we use nonzero
φ defined in (1) for orientation control.

The control law derived from the gradient-descent algo-
rithm is given by

ṗ = u =−∇V (p) =−[R(p)]⊤e+

 −p̃12
p̃12

02(N−2)

 . (2)

Let Dp = {x ∈ R2N |V (x) = 0}. Since V (p) is non-negative
and continuously differentiable, we have ∇V (p) = 02N for
any p ∈ Dp. Thus Dp is an equilibrium set for (2).

Unfortunately, Dp is not bounded, which causes some
difficulties in analyzing stability of Dp. To avoid such
difficulties, Dörfler and Francis use the link dynamics [16],
and Krick et al. use the centroid decomposition [14]. Instead,
we are going to use a decomposition procedure used in [27]
which is similar to one used in [14].

III. STABILITY OF THE DESIRED EQUILIBRIUM SET

A. Decomposition of the Centroid Dynamics

From the fact that R(p)(1N ⊗ I2) = 0M×2, we can see that

d
dt

(
1
N

N

∑
i=1

pi

)
=− 1

N
(1⊤N ⊗ I2)∇V (p) = 02,

Therefore, once an initial condition is given, the centroid of
the formation does not move along the solution trajectory

for (2). Let m = 1
N ∑N

i=1 pi, and qi = pi − m, ∀i ∈ V . Let
q = [q⊤

1 . . . q⊤
N ]

⊤. Consider an invertible linear trans-
formation L : R2N → E0 ×R2, p 7→ (q1, . . . ,qN ,m), where
E0 = {x ∈ R2N | (1⊤N ⊗ I2)x = 02}. Since ei j is a function of
relative position vectors for each (i, j) ∈ E , we can define
the potential function in terms of q as V̄ (q) = V (p). From
the fact that ∂V (p)/∂p = ∂V̄ (q)/∂q, and the centroid is
stationary, we can decompose the original systems (2) into
the following systems;

q̇ =−
[

I2N − 1
N
(1N1⊤N )⊗ I2

]
∇V̄ (q)

=−∇V̄ (q), (3)
ṁ = 02.

Consequently, we can investigate stability of the desired
formation by analyzing (3) instead of (2).

As we define V̄ by q, the rigidity matrix can be calculated
by q instead of p since the rigidity matrix is determined
by the relative position vectors of the agents. Thus, we can
define the rigidity matrix in terms of q as R̄(q) such that
R̄(q) = R(p).

Let Dq = {x ∈ E0 | V̄ (x) = 0}. It is clear that p is in Dp
if and only if q is in Dq. Unlike V (p), V̄ (q) is radially
unbounded, so Dq is compact, and we can consider another
compact set Ωq defined by Ωq = {x ∈ E0 | V̄ (x)≤ c, c > 0}.
From (3), we have ˙̄V (q) =−∥∇V̄ (q)∥2 ≤ 0 for any q in E0,
which means that Ωq is positively invariant, and Dq is stable.

B. Convergence of the Solution Trajectories

Although we know that Dq is stable, it is not yet revealed
whether or not q(t) converges to a point, which means that
the existence of limt→∞ p(t) has yet to be guaranteed. To
answer the question, we invoke the following lemma;

Lemma 2 (Theorem 1 in [27]): Let M denote a real an-
alytic manifold endowed with a real analytic Riemannian
metric. Let f denote an arbitrary real analytic function on
a real analytic Riemannian manifold M such that all sub-
level sets {y ∈M | f (y)≤ c, c > 0} are compact. Then each
solution of ẋ = −∇ f (x) exists for all t ≥ 0 and converges
for t →+∞ to a single equilibrium point x∗ which satisfies
∇ f (x∗) = 0.

From Lemma 2, we can state the following conclusion;
Corollary 1: Let Qq = {x ∈ E0 | ∇V̄ (x) = 02N}. Then

q(t), which is the solution trajectory for (3), converges to
a point in Qq as t → +∞. Equivalently, p(t), which is
the solution trajectory for (2), also converges to a point in
{x ∈ R2N | ∇V (x) = 02N} as t →+∞.

IV. FOUR-AGENT SYSTEMS

In this section, we explore a particular example on a group
of four mobile agents. General results beyond this particular
example can be found in [28].

Consider a formation represented by (G,p) of which
the vertex set V is {1,2,3,4}, and the edge set E is
{(1,2),(1,3),(2,3),(2,4),(3,4)} (see Fig. 1). Then (2) is
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1

2 3

4

Fig. 1. Four-vertex graph which is minimally rigid in R2.

written in detail by

ṗ =−∇V (p) =−∇V̄ (q)

=−


p12 p13 02 02 02
p21 02 p23 p24 02
02 p31 p32 02 p34
02 02 02 p42 p43


︸ ︷︷ ︸

=R(p)=R̄(q)


e12
e13
e23
e24
e34

+

−p̃12
p̃12
02
02

 , (4)

where pi j = pi −p j for all i, j ∈ V .
From Corollary 1, we know that p(t) converges to the

equilibrium set of (4). However, it does not mean that the
potential function also converges to 0. Therefore, we need
further analysis to investigate asymptotic stability.

Theorem 2: For the four-agent formation described in
Fig. 1, assume that the desired formation shape is given by
p̄ and that (G, p̄) is infinitesimally rigid. Then Dq is (locally)
asymptotically stable, and q(t) converges to a point in Dq.
Equivalently, p(t) also converges to a point in Dp.

Proof: We already know that Dq is stable. Consider Ωq
and the constant c used in the definition of Ωq. We can take
c small enough so that R̄(q) has full row rank for all q ∈ Ωq
by virtue of the properties of infinitesimal rigidity. To reveal
asymptotic stability of Dq, let us first characterize Qq ∩Ωq.
For any q ∈ Qq ∩Ωq, p42 and p43 are linearly independent
from the contrapositive of Lemma 1, which results in that
e24 = e34 = 0 from ∇V̄ = 02N . As well, p12 and p13 are
linearly independent, which is equivalent that p31 and p32
are linearly independent. Hence, e13 and e23 are also equal
to 0. Now we have

−p12e12 =−p12 + p̄12, (5)

from (4). Note that p12 and p̄12 must be linearly dependent.
Let p12 = ∥p12∥ ≥ 0, and p̄12 = p⊤

12p̄12/p12. Then, from (5),
we have

(p2
12 + p̄12 p12 −1)(p12 − p̄12) = 0, (p12 ̸= 0), (6)

and p12 = p̄12 is an isolated solution of (6). Thus, we can
choose c = c1 with sufficiently small c1 so that p̄12 > 0.
Moreover, by taking c= c2 ≤ c1 with sufficiently small c2, we
can choose Ωq so that p12 = p̄12 is the only solution of (6) for
q ∈ Ωq. Thus, for any q ∈ Qq ∩Ωq, ∇V̄ = 02N is equivalent
to [e⊤ p̃⊤

12] = 0⊤M+2. Therefore, it is true that Qq∩Ωq =Dq.
Since Ωq is positively invariant, q(t) converges to a point in

Dq from Corollary 1, which means that p(t) converges to a
point in Dp.

Consequently, from Theorem 2, we can conclude that if
the initial formation shape and the desired formation shape
are close enough, and the initial orientation and the desired
orientation are close enough also, then the agents finally
achieve the desired formation shape with desired orientation
prescribed by p̄.

Remark 1: Under distance-based formation control, it is
known that the final formation shape may not be congruent
to the desired shape if the initial formation shape and
the desired formation shape are not close enough. Such
characteristics are called flip ambiguity and flex ambiguity
[1].

Remark 2: There exists an incorrect equilibrium set in
which the potential function does not converge to 0 [14],
[15]. For example, if (p1(0)−p2(0)) is parallel to (p̄1 − p̄2)
with p3(0) and p4(0) located on the line connecting p1(0)
and p2(0), then q(t) approaches Qq \Dq. Hence, our results
on stability and asymptotic stability are valid only in a local
sense.

Remark 3: As we mentioned in Section I, an agent is not
necessarily required to be equipped with the compass if the
agent is governed by the distance-based control algorithm.
Thus, in our problem, only agents 1 and 2 need to know the
orientation of the global reference frame, whereas the other
agents do not.

V. SIMULATION

We provide simulation results of the four-agent systems
explored in Section IV. From Theorem 2, we know that if the
initial formation shape and the desired formation shape are
close enough in the sense that V (p(0)) is small enough, then
p(t) converges to Dp as t → +∞. To compare the effect of
orientation control with the results in the literature, we show
the trajectories of the agents in Fig. 2(a) provided that the
agents are governed by the control law derived with φ = 0.
The desired formation shape is given in Fig. 1, and we have

p̄ =
[
0 1 −1 0 1 0 0 −1

]⊤
.

In Fig. 2(a), we can observe that the orientation of the final
formation is different from the orientation of the desired
formation although the shapes are congruent.

In Fig. 2(b), the trajectories of the agents governed by
(4) (with nonzero φ defined in (1)) are drawn. The initial
condition is the same as one used in Fig. 2(a), which is
given by

p(0) =
[
1 1.5 −0.5 0.5 1.2 −0.2 −0.2 −1

]⊤
.

Corresponding history of V (p(t)) is shown in Fig. 2(c), and
we can observe that the potential function finally converges
to 0.

Although we do not provide analysis on six-agent systems
in detail, we show the simulation results of six-agent com-
plete formation1 in Fig. 4. The desired formation shape is

1By complete formation, we mean a formation of which the underlying
graph is complete.

2202

Authorized licensed use limited to: Universitas Brawijaya. Downloaded on May 06,2021 at 00:46:56 UTC from IEEE Xplore.  Restrictions apply. 



−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

x−axis [m]

y
−

a
x
is

 [
m

]

 

 

Agent 1

Agent 2

Agent 3

Agent 4

(a) Without orientation control

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

x−axis [m]

y
−

a
x
is

 [
m

]

 

 

Agent 1

Agent 2

Agent 3

Agent 4

(b) With orientation control

0 5 10 15 20
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time [s]

V

 

 

V(p(t))

(c) V (p(t)) on [0,20]

Fig. 2. Simulation of four-agent minimally rigid formation

shown in Fig. 3 where

p̄ = [2 0 1
√

3 −1
√

3 −2 0 −1 −
√

3 1 −
√

3]⊤ .

Without orientation control, only the formation shape ap-

1

23

4

5 6

Fig. 3. Six-vertex complete graph which is globally rigid.

proaches the desired shape (Fig. 4(a)). However, as we
revealed in four-agent case, with orientation control, the
agents achieve the desired orientation as well as the desired
shape (Fig. 4(b)).

VI. CONCLUSION

We proposed a control strategy that can maneuver the
mobile agents in the plane so that they achieve not only
the desired formation shape but also the desired orientation
of the formation. The fundamental idea for formation shape
control is using the distance control strategy proposed in
the previous literature [1], [2], [14]–[16], [27]. By adding a
displacement error term to the potential function, the whole
formation is forced by the proposed control law to achieve
the same orientation of the desired realization as well as the
desired formation shape. On the basis of our analysis, we
provided some simulation results to assert our conclusion.

From the proposed control law, we can observe the
possibility that combination of distance and displacement
constraints results in new characteristics compared to the
existing results in the literature. We expect that we would be
able to mix those different constraints, thereby the rigidity
condition may be relaxed.
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