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Abstract— This paper proposes distance-based adaptive for-
mation control laws for the leader-follower system. The devel-
oped controller makes all the agents maintain the formation
group and move with a constant reference velocity in a plane.
It is assumed that there are one leading and two following
agents. The leading agent knows the reference velocity whereas
the follower does not know the velocity of other agents. Thus,
to move in a group, the controller for the follower estimates the
reference velocity. An adaptive method is used in the estimation
process. The stability and boundedness of the formation are
proved by using Lyapunov stability analysis and Barbalat’s
lemma. Simulations results are included to illustrate the validity
of the developed theories.

I. INTRODUCTION

In our lives, we see many formations such as flocks of
birds or clusters of planes as Fig. 1. Animals in nature form
a flock or a school because formation behaviors provide
benefits to the animals. For instance, an animal in a herd
has small chance to be directly attacked from predators. By
grouping, animals also can integrate sense to maximize the
chance of detecting predators or foraging for food. Research
on the flock and school show that these behaviors are
combination of staying in the group and keeping a distance
from other members of the group. That is, the animals
form a specific formation by preserving the distance between
each other. Groups of artificial agents can get the similar
benefits. In formation, the range of detection can be large,
and the responsibility of each agent can be reduced. They can
accomplish a mission efficiently. Therefore, it is useful and
valuable to keep the formation. As a result, in recent years,
the research on the formation control of unmanned multi-
agent systems has received significant attention [1], [2], [3],
[4], [5], [6]. In particular, an interest in the distance-based
formation control has been increasing gradually.

The formation control problems are categorized into sev-
eral parts according to the information architecture uti-
lized; for example, position-based, displacement-based, and
distance-based formation control problems have been studied
[2]. The latter two architectures are more challenging relative
to the first one since they use only local information for
formation control. In the displacement-based control, agents
measure the relative positions of their neighbors with respect
to a global reference frame. In this case, the orientations
of local reference frame of each agent are aligned to a
global reference frame. Thus, the displacement of each agent
can be directly controlled to achieve its desired formation
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(a) The formation of birds (b) The formation of planes

Fig. 1: Examples of formation in nature

(e.g. [4], [5], [6]). On the other hand, for the case of the
distance-based control, agents measure the relative positions
of their neighbors with respect to their own local reference
frames that are not aligned with each other. Therefore, in the
distance-based formation control, displacement of each agent
cannot be directly controlled; instead, agents use distances
between each other as a control variable to achieve and
maintain the desired formation (e.g. [1], [3], [7], [8], [9],
[10]).

Since available information is restricted in distance-based
control, it makes the problem quite complicated; thus, it
is not easy to solve it in general. However, there are
several reasons why pursuing a research on the distance-
based formation control is extremely useful and valuable.
That is, in the case of distance-based formation control, the
controllers for each agent, except the leading agent, only
need the relative positions of neighbors with respect to their
own local reference frames. This means that each agent
requires less equipment and the controllers for each agent are
perfectly decentralized. Thus, a global sensing is not required
in the distance-based setups, which implies that the distance-
based approaches have better cost-effectiveness, scalability,
and robustness than the position-based and displacement-
based approaches.

Most of the previous research on the distance-based forma-
tion control has considered only the shape of the formation
(e.g. [1], [7], [8], [11]). However, in practical situations
such as unmanned aerial vehicles or airplanes, the agents
should not only maintain the shape of formation but also
move with a given reference velocity. There are a number
of research works that consider movement of formation in
the displacement-based control, but for the distance-based
control, only few results are available because of its ex-
tremely complexity in analysis. The movement of formation
was handled recently only in several articles such as [3],
[9], [10], [12], [13]. The convergence of formation, when the
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reference velocity is constant, was mentioned in [3]; however
unfortunately, there is a wrong proof of theorem. A moving
formation with two leaders was studied in [13].

In this paper, a distance-based formation control law is
proposed, where both the shape and movement of formation
are considered. Contrary to [13], this paper particularly
focuses on the case where there are one leading agent and
two following agents. All of the agents measure only relative
positions of their neighbors with respect to their own local
reference frames. The difference between the leader and
followers is that the leader knows the reference velocity
and the followers do not know it. Therefore, the follower
is supposed to estimate the reference velocity. To solve
this additional issue, using an adaptive control method, the
follower estimates the reference velocity. After that, using
this adaptively estimated velocity, the desired formation is
achieved only using relative distance information among
agents.

The outline of this paper is as follows. In Section II,
we introduce background and preliminaries of this research
and, in Section III, the problem studied in this paper is
explicitly defined. The control law for the leader-follower
formation and stability analysis are presented in Section
IV. The simulation results are shown in Section V and the
conclusion and future works are described in Section VI.

II. BACKGROUND AND PRELIMINARIES

A. Graph

Directed graph is represented by a pair G = (V, E),
where V = {1, ..., N} is the set of vertices and E =
{..., (i, j), ...} ⊂ V × V is the set of directed edges. The
N is the number of vertices, and an edge (i, j) is considered
to be directed from j to i. The set of neighbors of i ∈ V
is defined as Ni = {j ∈ V| (i, j) ∈ E}. The pair (G, x) is
called a framework, where xi ∈ R2 is position of vertex i

and x =
[
xT
1 · · ·xT

N

]T ∈ R2N is a realization of G. The
position of vertex i is fitting if there is no position x∗

i ∈ R2

for i such that

{(i, j) ∈ E| ∥xi − xj∥ = dij} ⊂ {(i, j) ∈ E| ∥x∗
i − xj∥ = dij}

where dij > 0 is the desired distance.
In this paper, the desired formation is supposed to be

persistent. The definition of persistent is given as follows
[14]:

Definition 2.1: A representation x is persistent if there
exists ε > 0 such that every representation x′ is fitting
for the distance set induced by x and satisfying d (x, x′) =
max
i∈V

∥xi − xi
′∥ < ε is congruent to x. A graph is generically

persistent if almost all its representations are persistent.

B. Input-to-state stability

Consider a system

ẋ = f (x, u) (1)

where f : Rn × Rm → Rn is continuous in time and
Lipschitz in x and u. The input u(t) is continuous and

bounded function of t for all t ≥ 0. Given the system (1),
input-to-state stability is defined as follows:

Definition 2.2 ([15]): The system (1) is said to be input-
to-state stable if there exist a class KL function β and a class
K function γ such that for any initial state x (t0) and any
bounded input u (t), the solution x (t) exists for all t ≥ t0
and satisfies

∥x (t)∥ ≤ β (∥x (t0)∥ , t− t0) + γ

(
sup

t0≤τ≤t
∥u (τ)∥

)
The next theorem presents a sufficient condition for input-

to-state stability.
Theorem 2.1 ([15]): Suppose f (x, u) is continuous dif-

ferentiable and Lipschitz in (x, u), uniformly in t. If the
unforced system ẋ = (x, 0) has a exponentially stable
equilibrium point at the origin x = 0, then the system (1) is
input-to-state stable.

C. Notation

In this paper, the following notation is used, Θ(·), which
is defined as follows:

Definition 2.3 (Big-theta, Θ(·)): Let f (n) and g (n) be
functions defined on some subset of the real numbers. We
say that f (n) is Θ(g (n)) (or f (n) ∈ Θ(g (n))) if there
exist real numbers k1 > 0 and k2 > 0 and there exists a real
number n0 such that k1g (n) ≤ f (n) ≤ k2g (n) for every
real number n ≥ n0.

III. PROBLEM STATEMENT

In this paper, it is supposed that the motion model of each
agent is a single integrator. Therefore, the system in two
dimension is expressed as

ṗi = ui, i = 1, ..., N (2)

where pi ∈ R2, ui ∈ R2 and N ∈ R are the position,
the control input for agent i and the number of agents,
respectively. This paper considers only three agents; thus N
is three.

The first and the second agents are called respectively
leader and first follower. The other agents are called fol-
lowers. Each agent measures the relative position of a
neighboring agent j ∈ Ni with respect to a local reference
frame. Because the leader has no neighbor, it is not affected
by the other agents. However, the other agents including the
first follower are affected by the other agents because they
have one or more neighbors.

Fig. 2 shows the direction of the interactions between
agents. The arrow from agent j to agent i means that the
agent j measures the relative position of agent i and uses
this information for positioning.
zij ∈ R2 and eij ∈ R are used to represent the relative

position vector and the distance error:

zij = pi − pj , ∀ (i, j) ∈ E (3)

eij = ∥zij∥2 − d2ij , ∀ (i, j) ∈ E (4)

where dij ∈ R is the desired distance between agent i and
j.
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Fig. 2: Interactions in the directed graph when the number
of agents are three.

The several conditions of system are assumed.
Assumption 3.1: The desired formation is minimally per-

sistent and has three agents called leader, first follower and
follower (i.e., leader-follower system).

Assumption 3.2: The leading agent moves with reference
velocity v0 ∈ R2 which is constant. However, the following
agents including the first follower do not know the velocity
of leading agent or other agent.

In this paper, the distance-based formation control law
for the system (2) is designed and the stability of system
is analyzed.

IV. STABILITY ANALYSIS

In the Assumption 3.2, it is assumed that the leader moves
with reference velocity v0. Therefore, the dynamics of leader
is represented as:

ṗ1 = v0

A. Stability of the first follower

As mentioned Section III, the first follower measures only
the relative position of leading agent and have to keep the
desired distance. In the previous research, the distance error
of first follower is not converged to zero when the leading
agent is moving. The only boundedness of error is proved
when the leading agent is moving with reference velocity.

In this paper, the adaptive method is considered to estimate
the velocity of leading agent and to keep the desired distance.
The control law and the estimator for the first follower are
proposed as:

u2 = v̂2 + k0z12e12 (5)
˙̂v2 = z12e12 (6)

where k0 is an arbitrary positive constant. The velocity of
convergence is changed according to the k0.

Consider the Lyapunov candidate to analyze stability of
the first follower:

V1 =
1

2
e212 + ∥v0 − v̂2∥2 (7)

which is continuously differentiable.

The time derivative of V1 is

V̇1 = −2k0e
2
12∥z12∥

2 ≤ 0 (8)

From (7) and (8), it is clear that the derivative of Laypunov
candidate is positive semi-definite. Therefore, we can obtain
the following result.

Theorem 4.1: The distance error e212 and the adaptation
error ∥v0 − v̂2∥2 are bounded and smaller than initial values.

The next result is obtained also from (7) and (8).
Lemma 4.1: The state of system converges to one of the

following two cases:
1) The distance error converges to zero (i.e., e12 → 0).
2) The position of first follower becomes coincident with

leading agent (i.e., z12 → 0).
Proof: The Lyapunov candidate was defined as (7).

Therefore, V1 is lower bounded. From (8), the time derivative
of Lyapunov candidate is negative semi-definite. Further, V̇1

is uniformly continuous because e212 and ∥v0 − v̂2∥2 are
bounded. These conditions satisfy Barbalat’s lemma [15] and
imply V̇1 → 0 (i.e., e212∥z12∥

2 → 0) as t → ∞. Because e12
is defined as (4), both e212 and ∥v0 − v̂2∥2 cannot be zero at
the same time. As a result, the state of system converges to
one of two cases; e12 → 0 or z12 → 0.

In Theorem 4.1 and Lemma 4.1, the boundedness of e212
and ∥v0 − v̂2∥2 is proved and the convergence of e212∥z12∥

2

is also shown. By using these results, the convergence of
estimate error is obtained.

Theorem 4.2: The estimator (6) can estimate the velocity
of leading agent. That is, the estimate error converges to zero
(i.e., (v0 − v̂2) → 0 as t → ∞).

Proof: Because both e12 and v0 − v̂2 are bounded as
proved in Theorem 4.1, ˙̂v2 = z12e12 is uniformly continuous
and v̂2 is also bounded. Further, ˙̂v2 converges to zero
because e212∥z12∥

2 converge to zero as shown in Lemma
4.1. Therefore, it is concluded that v̂2 converges to arbitrary
constant velocity.

Consider

z12 = p1 − p2 =

∫
(ṗ1 − ṗ2) dt+ p1 (0) + p2 (0)

=

∫
(v0 − v̂2 − k0e12z12) dt+ p1 (0) + p2 (0)

Therefore,∫
(v0 − v̂2) dt = z12 + k0

∫
e12z12dt− p1 (0)− p2 (0)

= z12 + k0v̂2 − p1 (0)− p2 (0)

It is already known that z12 and v̂2 converge to arbitrary
constant. Therefore, v0 − v̂2 is converge to zero by using
Barbalat’s lemma.

Next, the convergence of distance error is proved by using
the input-to-state stability. Therefore, the input-to-state stable
of distance error has to be shown at first.

Consider the distance error dynamics as follows:

ė12 = 2zT12ż12 = 2zT12 (v0 − v̂2 − k0z12e12)

:= f1 (e12, v0 − v̂2) (9)
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where f1 with v0− v̂2 as input is continuously differentiable
and Lipschitz.

Theorem 4.3: The distance error dynamics (9) with v0−v̂2
as input is input-to-state stable unless the leading agent and
the first follower are initially coincident (i.e., z12 (0) ̸= 0).

Proof: From the result in Theorem 4.1, it is easily
obtained that f1 is continuously differentiable and Lipschitz.

The unforced system of (9) is as belows:

ė12 = f1 (e12, 0)

= 2zT12 (−k0z12e12) = −2k0∥z12∥2e12

Define a Lyapunov candidate to analyze the stability of
unforced system:

c1e
2
12 ≤ V2 =

1

2
e212 ≤ c2e

2
12

where c1 and c2 are positive constants and satisfy c1 ≤ 1
2 and

c1 ≥ 1
2 . Therefore, the time derivative of Lyapunov candidate

is

V̇2 = e12ė12 = −2k0∥z12∥2e212 ≤ −c3e
2
12

where c3 is positive and satisfies c3 ≤ 2k0∥z12∥2. As a result,
the unforced system is exponentially stable unless ∥z12∥ is
initially zero. These results imply that f1 is input-to-state
stable by using Theorem 2.1.

By using Theorem 4.2 and Theorem 4.3, it is concluded
that the first follower converge to the desired formation.

Theorem 4.4: In the system (2), unless the agents are
initially coincident(i.e., p1 (0) ̸= p2 (0)), the control law (5)
and the estimator (6) make the first follower converge to the
desired formation with the distance given as d12.

Proof: In Theorem 4.3, it was proved that the distance
error dynamics (9) with v0 − v̂2 as input is input-to-state
stable. Further, in Theorem 4.2, it was shown that v0 −
v̂2 converges asymptotically to zero. Because the input of
distance error dynamics converges to zero, the distance error
e12 converges asymptotically to zero as t → ∞. That is,
∥z12∥ → d12 as t → ∞.

The convergence of distance error implies that ṗ2 → v̂2 in
(2) and (5). Therefore, the velocity of first follower converges
to the velocity of leading agent (i.e., ṗ2 → v0 as t → ∞).

B. Stability of the follower

The follower measures the relative positions of neighbors
such as the leading agent and the first follower. Using
these informations, the control law and the estimator for the
follower are proposed as:

u3 = v̂3 + z13e13 + z23e23 (10)
˙̂v3 = z13e13 + z23e23 (11)

To investigate boundedness of the follower, consider a
following function:

V3 =
1

4
∥e13∥2 +

1

4
∥e23∥2 +

1

2
∥v0 − v̂3∥2 (12)

Then,

V̇3 = −∥e13z13 + e23z23∥2 + e23z
T
23 (v̂2 − v0 + e12z12)

≤ −∥e13z13 + e23z23∥2 + ∥e23z23∥ ∥v̂2 − v0 + e12z12∥
= −α (z (t)) + β (z (t)) (13)

where

α (z (t)) := ∥e13z13 + e23z23∥2

β (z (t)) := ∥e23z23∥ ∥v̂2 − v0 + e12z12∥

Theorem 4.5: In the system (2), the distance error and
the velocity estimation error of the follower are bounded by
applying (12) and (13). (i.e., |e13|, |e23| and ∥v0 − v̂3∥ are
bounded)

Proof: To investigate boundedness of |e13|, |e23| and
∥v0 − v̂3∥, suppose that ∥z13∥ and ∥z23∥ are sufficiently
large. Because zij and eij are defined in (3) and (4), e13 ≃
e23 ≃ ∥z13∥2 ≃ ∥z23∥2 is acquired if ∥z13∥ and ∥z23∥ are
sufficiently large. Therefore, α behaves as Θ

(
∥z13∥6

)
.

From Theorem 4.1, it is obtained that ∥v̂2 − v0 + e12z12∥
is bounded and smaller than initial value. Therefore, β

behaves as Θ
(
∥z13∥3

)
.

Here, (13) is rewritten as follows:

V̇3 ≤ −Θ
(
∥z13∥6

)
+Θ

(
∥z13∥3

)
From the relationship

∣∣∣Θ(
∥z13∥6

)∣∣∣ > ∣∣∣Θ(
∥z13∥3

)∣∣∣ accord-

ing to their definitions, it can be now concluded that V̇3 is
always negative if ∥z13∥ and ∥z23∥ are sufficiently large.
Therefore, the boundedness of |e13|, |e23| and ∥v0 − v̂3∥ is
clear.

V. SIMULATION

The simulation is performed as depicted in Fig. 2. The
initial positions of three agents are given as follows:

p1 (0) = (0, 5) ; p2 (0) = (0, 0) ; p3 (0) = (5, 0)

and the reference velocity v0 is given as v0 = (10, 10). The
desired formation is given as:

d12 = 10; d13 = 15; d23 = 15

The trajectories of agents are shown in Fig. 3 and the errors
of distance are shown in Fig. 4. As a result, it is clear from
the figures that the formation is bounded and the desired
formation is achieved.

The velocity estimation error of each follower is shown
in Fig. 5 and it reveals that the difference between the
estimated values (i.e, v̂2 or v̂3) and reference velocity value
v0 converges to zero.
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Fig. 3: Trajectories of agents

Fig. 4: Errors of distance

VI. CONCLUSIONS

In this paper, the distance-based adaptive formation con-
troller for leader-follower agents system was proposed. From
the stability analysis, it was theoretically proved that the
proposed controller makes the first follower converge to
the desired formation and move with the reference velocity.
Further, the follower is stabilized by using the proposed
controller. Even though the first follower and the other
followers do not know the value of reference velocity, the
stability or convergence of system is obviously obtained. By
performing the simulation, it is proved that the controller is
working as designed.

In our problem setup, the value of reference velocity
is restricted to be a constant. In our future works, the
problem including time-varying reference velocity shall be
considered. Also, we hope to extend the results of this paper

Fig. 5: Errors of velocity estimate

to more general dynamics that may have N agents.
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