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Abstract—This paper introduces distance-based control laws
for the multi-agent formation maneuvering and target intercep-
tion problems using a double-integrator agent model and rigid
graph theory. The proposed controls consist of a formation
acquisition term, dependent on the graph rigidity matrix, and a
formation maneuvering or target interception term. The control
laws are only a function of the relative position/velocity of agents
in an infinitesimally and minimally rigid graph, the agent’s
own velocity, and either the desired velocity of the formation
or the target’s relative position to the leader and velocity. The
target interception control includes a variable structure-type
term to compensate for the unknown target acceleration. A
Lyapunov-based stability analysis is used to prove that the
control objectives are met.

I. INTRODUCTION

A multi-agent system refers to a network of interacting
“agents” that collectively perform a complex task. The
concept is inspired by the collective behavior of biologi-
cal systems in nature, e.g., flock of birds, school of fish,
and colonies of bees. Interestingly, the behavior of such
biological swarms is distributed and decentralized as each
biological agent operates using its own local sensing and
control mechanisms devoid of global knowledge or planning
[11]. An example of an engineering multi-agent system is
a group of autonomous (ground, underwater, water surface,
or air) vehicles performing surveillance, reconnaissance,
mapping, or search of an area. Recent advances in sensor
technology, computer processing, communication systems,
and power storage now make it feasible to deploy such
swarms of coordinated, cooperating vehicles in various envi-
ronments. Multi-agent systems offer many advantages over
a large single agent such as more efficient and complex
task execution, robustness when one or more agents fail,
scalability, versatility, adaptability, and lower cost. However,
they introduce a host of unique challenges: coordination and
cooperation among agents, distribution of information and
subtasks, communication protocols, design of control laws,
and collision avoidance.
Among the many coordination and control problems for

multi-agent systems, we are interested here in the class of
formation problems. Specifically, our focus is on three related
problems with increasing level of complexity: formation
acquisition, which is defined as designing control inputs for
the agents so that they form a pre-defined geometric shape
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in space; formation maneuvering, where agents are required
to simultaneously acquire a formation and move cohesively
following a pre-defined (time-varying) trajectory; and target
interception, where agents intercept and surround a moving
target with a pre-defined formation. Note that formation
acquisition is a pre-condition for formation maneuvering and
target interception.
The aforementioned control problems are relatively

straightforward to solve when the agents’ global coordinates
(absolute positions) are available via a central planner. How-
ever, as pointed out in [15], a global positioning system
(GPS), which is typically used in such cases, has limited
accuracy when there is no line of sight between the GPS
receiver and satellite (e.g., urban areas, dense vegetation, and
dense clouds). Therefore, we consider here the decentralized
formation problem where each agent has only locally-sensed
information about the other agents obtained from onboard
sensors, such as an inertial-type navigation system, laser
range finder, camera, and/or compass.
Graph theory, specifically the concepts of graph Laplacian

and graph rigidity, is a natural tool for describing the
multi-agent formation shape and the inter-agent sensing and
communication network topology in the decentralized case.
Rigid graph theory, in particular, naturally ensures that the
inter-agent distance constraints of the desired formation are
enforced through the graph rigidity. This implicitly ensures
that collisions between agents are avoided while acquiring
the formation. Another advantage of using the inter-agent
distances as the controlled variables is that position measure-
ments in a global coordinate frame are not required [26] as
would be the case when employing "consensus" algorithms
[23]. An overview of rigid graph theory and its application
to sensing, communication, and control architectures for
formations of autonomous vehicles was presented in Ref.
[1].
In this paper, we propose control laws for the formation

maneuvering and target interception problems of  planar
agents using a double-integrator model for their motion.
In solving these problems, we model the formation with
an undirected rigid graph and consider the stabilization of
the inter-agent distance dynamics to desired distances. We
build upon our previous result in [5], which was based on
the simpler, single-integrator (kinematic) model. Specifically,
we exploit the backstepping technique [16] to construct
rigidity matrix-based control laws augmented with a term to
enable the agents to perform formation maneuvering or target
interception, simultaneously with formation acquisition, for
the double-integrator model. We begin with the formation
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maneuvering problem, where the desired swarm (group)
motion is known to all agents. We then show how the
idea behind the control design for formation maneuvering
can be extended to the target interception problem. In this
case, we use the leader-follower concept by assigning the
leader role to one agent in the formation, who is responsible
for intercepting the moving target. We assume the target’s
relative position to the leader and velocity are known and
can be broadcast to the followers; however, the target’s
acceleration is unknown to all agents. To deal with this
uncertainty, the target interception component of the control
law will contain a variable structure-type term to compensate
for the unknown target acceleration. The graph that models
the desired formation in this case is constructed such that the
leader is in the convex hull of the followers. As a result, the
proposed control ensures the followers eventually enclose the
target. Our stability analysis for both problems relies on rigid
graph theory and Lyapunov-based arguments, and provides
exponential formation acquisition. As a result, asymptotic
formation maneuvering or target interception can be readily
proven.
Previous results on formation acquisition based on con-

trolling inter-agent distances for the single- and double-
integrator models can be found in [4], [7], [9], [15], [18],
[26] and [6], [20], respectively. In [19], a distance-based
formation maneuvering controller was proposed using the
single-integrator model for cycle-free persistent formations
under the condition that the trajectory velocity is suffi-
ciently low. A relative position-based formation maneuvering
protocol was introduced in [27] for the single-integrator
model that ensures formation acquisition in finite time. A
collaborative target tracking controller based on flocking and
Kalman-type filtering algorithms was given in [22] using
the double-integrator agent model. In [11], distance-based
formation maneuvering and target interception schemes were
designed using the single-integrator model by adding terms
to a gradient-of-potential-function law. In one of the target
interception schemes in [11], the absolute velocity of the
target is uncertain but with known bound. The double-
integrator model was used in [21] where maneuvering of the
flocking agents was achieved by adding a dynamic virtual
leader-dependent term to the control scheme. Recently, [17]
used an iterative learning controller to ensure finite-time
formation maneuvering with bounded tracking error.
The main contribution of this paper is that it is the first

to demonstrate how to extend the rigid graph-based control
framework [4], [9], [15], [18], [26] to the formation maneu-
vering and target interception problems using the double-
integrator dynamic model for the agents.

II. PRELIMINARIES

Some basic concepts of rigid graph theory in R2 used by
our control formulation are outlined below.
An undirected graph  is a pair () where  =

{1 2     } is the set of vertices and  ⊂  ×  is the
set of undirected edges such that if vertex pair ( ) ∈ 

then so is ( ). The number of edges  is given by  ∈

{1     (− 1)2}. Let the set of neighbors of vertex  be
denoted by

N () = { ∈  | ( ) ∈ }  (1)

If  ∈ R2 is the coordinate of vertex , then a framework
 is a pair ( ) where  = (1     ) ∈ R2. That is,
a framework is simply a realization of the graph at given
points in the plane. Based on an arbitrary ordering of the
edges in , the edge function  : R2 → R is given by

() =
³
    k − k2    

´
 ( ) ∈  (2)

where k·k denotes the Euclidean norm. The th component
of (2), k − k2, corresponds to the th edge in  connect-
ing vertices  and . The rigidity matrix  : R2 → R×2

of  = ( ) is defined as

 () =
1

2

()


 (3)

It is known that rank[()] ≤ 2− 3 [2].
An isometry of R2 is a bijective map  : R2 → R2 such

that [12]

k− k = k ()−  ()k  ∀  ∈ R2 (4)

Note that  accounts for rotation, translation, and reflection
of the vector  − . We denote the set of all isometric
frameworks of  by Iso( ). It is not difficult to show that
(2) is invariant under isometric motions of  [1], [15], [24].
Two frameworks ( ) and ( ̂) are equivalent if

() = (̂) and are congruent if k − k = k̂ − ̂k
for all   ∈  [13]. We say a framework ( ) where
  2 and  is generic1 is infinitesimally rigid if and only
if rank[ ()] = 2 − 3 [8], [13]. A framework ( )
is minimally rigid if  = 2 − 3. If two infinitesimally
rigid frameworks ( ) and ( ̂) are equivalent but not
congruent, then they are said to be flip ambiguous [1]. We
denote the set of all flip ambiguities of an infinitesimally
rigid framework  and its isometries by Amb( ). We as-
sume that all frameworks in Amb( ) are also infinitesimally
rigid. This assumption is reasonable and, in fact, holds almost
everywhere; see [1] and Theorem 3 of [3] for details.
The preliminary results below will be vital for establishing

our main result. Specifically, they will allow us to formalize
the stability set of the closed-loop system in relation to the
infinitesimal rigidity and flip ambiguities of the framework
modeling the formation. To this end, we consider two frame-
works  = ( ) and ̄ = ( ̄) sharing the same graph
 = (), and the metric [14]

dist (M) = inf
∈

k − k (5)

for a point  and a setM.
Lemma 1: If  is infinitesimally rigid and

dist(̄ Iso ( )) ≤  where  is a sufficiently small
positive constant, then ̄ is also infinitesimally rigid.

1By generic, we mean the affine span of  is all of R2 [8].
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Proof: Let ̂ = ( ̂) ∈ Iso( ) be such that
dist (̄ Iso ( )) = inf

∈Iso( )
k̄− k = k̄− ̂k  (6)

Since  is infinitesimally rigid, then so is ̂ . Therefore,
rank[(̂)] = 2− 3 and there exists a (2− 3)× (2− 3)
submatrix of (̂),  (̂), such that det[(̂)] 6= 0.
The submatrix (̂) has nonzero elements of the form
(̂ − ̂)

 , ( ) ∈ . Since dist(̄ Iso ( )) = k̄− ̂k ≤
, it is not difficult to show that [̄] = [̂] +  where
[·] denotes the th component of the vector and  is
a sufficiently small positive constant. Thus, the nonzero
elements of (̄) have the form [̄] − [̄ ] = [̂] −
[̂ ] +  − , which are continuously dependent on ̂.
Since the eigenvalues of a matrix depend continuously on
its elements [10], and the determinant of a matrix is the
product of its eigenvalues, it follows that the determinant
continuously depends on the elements of the matrix. Thus,
for sufficiently small , we have that det[ (̄)] 6= 0

and rank[ (̄)] = rank[ (̂)] = 2 − 3. Now, since
 (̄) is a full rank submatrix of  (̄), we know that
rank[(̄)] = 2− 3 and the framework ̄ is infinitesimally
rigid.
Corollary 1: Consider the function

Ψ(̄   ) =
X

()∈
(k̄ − ̄k− k − k)2  (7)

If  is infinitesimally rigid and Ψ(̄   ) ≤  where 

is a sufficiently small positive constant, then ̄ is also
infinitesimally rigid.

Proof: First, note that Ψ(̄   ) = 0 implies that ̄ ∈
Iso( ) or ̄ ∈ Amb( ). Therefore, Ψ(̄   ) ≤  implies
that there is a sufficiently small positive constant  such that
dist(̄ Iso ( )) ≤  or dist(̄Amb( )) ≤ . From Lemma 1,
we know that ̄ is infinitesimally rigid if dist(̄ Iso ( )) ≤
. Since the elements of Amb( ) are infinitesimally rigid,
the proof of Lemma 1 can be followed with Iso( ) replaced
by Amb( ) to show that dist(̄Amb( )) ≤  implies ̄ is
infinitesimally rigid.
Lemma 2: Let  ∈ R2 and 1 be the ×1 vector of ones,

then  () (1 ⊗ ) = 0.
Proof: From (3), it is not difficult to see that each row

of the rigidity matrix () takes the formh
0  0 ( − )


 0  0 ( − )


 0    0

i
 (8)

Thus, the dot product of each row of () and the 2 × 1
vector 1 ⊗  will be zero.

III. PROBLEM STATEMENT

Consider a system of  agents in the plane modeled by
the double integrator [22], [23]

̇ =  (9a)

̇ =   = 1      (9b)

where  = ( ) ∈ R2 is the th agent position with
respect to (w.r.t.) an Earth-fixed coordinate frame,  ∈

R2 represents the th agent velocity w.r.t. an Earth-fixed
coordinate frame, and  ∈ R2 is the (acceleration-level)
control input.
Let the desired formation for the agents be represented

by an infinitesimally and minimally rigid framework  ∗ =
(∗ ∗) where ∗ = ( ∗ ∗), dim( ∗) = , dim(∗) =
, and ∗ = (∗1      

∗
). The constant desired distance

between agents  and  is given by

 =
°°∗ − ∗

°°  0   ∈  ∗ (10)

Consider that the actual formation of the agents is rep-
resented by the framework  () = (∗ ()) where  =

(1     ). Assume that the relative position of agent pairs
in ∗ and the velocity of each agent can be measured. Fur-
ther, assume that at  = 0 the agents do not satisfy the desired
inter-agent distance constraints, i.e., k(0)− (0)k 6=  ,
  ∈  ∗.
In this paper, we deal with two types of control problems

for the multi-agent system: formation maneuvering and target
interception. The common, primary control objective for
these two problems is to design  = ( −      −
  ),  = 1      and  ∈ N (

∗) where N (·) was
defined in (1) such that

 ()→ Iso ( ∗) as →∞ (11)

Note that (11) is equivalent to

k()− ()k→  as →∞   ∈  ∗ (12)

In the formation maneuvering problem, the secondary
objective is

()− ()→ 0 as →∞  = 1   (13)

where  ∈ R2 is the desired translational velocity for
the swarm. We assume  is a known C1 function and
() ̇() ∈ L∞. This assumption is not restrictive because
 is known a priori and can be pre-stored on each agent’s
onboard computer.
In the target interception problem, we will take the th

agent to be the leader while the remaining agents are
followers. Our control scheme will consist of: a) selecting
the infinitesimally and minimally rigid framework  ∗ such
that ∗ ∈ conv

©
∗1  

∗
2   

∗
−1

ª
where conv{·} denotes the

convex hull, b) the leader intercepting the target, and c) the
followers tracking the leader while maintaining the desired
formation. Thus, the secondary objective for this problem is

 () ∈ conv {1() 2()  −1()} as →∞ (14)

where  ∈ R2 denotes the target position. We consider that
 is a C2 function and  () ̇ () ̈ () ∈ L∞. Here,
we will assume the signals  − , ̇ − ̇, and ̇ are
known and can be broadcast to the followers; however, ̈
is unknown. Knowledge of these signals is reasonable since
they can be directly measured by sensors onboard the leader.
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IV. FORMATION MANEUVERING

Define the relative position of two agents as

̃ =  −   ( ) ∈ ∗ (15)

and let ̃ = (    ̃    ) ∈ R2 with the same ordering of
terms as the edge function (2). The distance error is given
by

 = k̃k−   ( ) ∈ ∗ (16)

It follows from (16) and (9a) that the distance error dynamics
is

̇ =




³q
̃ ̃

´
=

̃ ( − )

 + 
 (17)

Consider the potential function [9], [15], [18]

 =
1

4
2  (18)

where
 = k̃k2 − 2  ( ) ∈ ∗ (19)

Note that (19) can be rewritten using (16) as

 =  (k̃k+ ) =  ( + 2)  (20)

Since k̃k 6= − because k̃k ≥ 0 (or equivalently,
 6= −2 because  ≥ −), it is easy to that  = 0
if and only if  = 0. Therefore, (18) is positive definite
and radially unbounded in  .
We now define the following function

 () =
X

()∈∗
() (21)

where  = (        ) ∈ R∗ is ordered as (2). The time
derivative of (21) along (17) is given by

̇ =
X

()∈∗
 ( + 2) ̃


 ( − )  (22)

It follows from (3) and (20) that (22) can be rewritten as

̇ = () (23)

where  = (1  ) ∈ R2,  = (   ) ∈ R
∗
,

( ) ∈ ∗. The terms in  are ordered in the same way
as in (2).
Following the backstepping technique [16], we introduce

the variable
 =  −  (24)

where  ∈ R2 denotes the fictitious velocity input. We
also introduce the function

 ( ) = () +
1

2
  (25)

where was defined in (21). After taking the time derivative
of (25), we obtain

̇ = () + 
£
+ ()  − ̇

¤
(26)

where (23), (9b), and (24) were used, and  = (1  ) ∈
R2.

Before stating the main result, we introduce the following
lemma and conjecture.
Lemma 3: For nonnegative constants  and , the level set

 () ≤  is equivalent to Ψ ( ∗) ≤  where Ψ and 
were defined in (7) and (21), respectively.

Proof: First, from (7), (10), and (16), we have that

Ψ ( ∗) =
X

()∈∗

¡k − k−
°°∗ − ∗

°°¢2
=

X
()∈∗

(k − k− )
2

=
X

()∈∗
2  (27)

From (21) and the conditions on(), we know () ≤
 implies that  is bounded for ( ) ∈ ∗. This bounded-
ness along with (27) implies Ψ ( ∗) ≤  where  is some
nonnegative constant.
Now, given Ψ ( ∗) ≤ , it follows from (27) that  is

bounded for ( ) ∈ ∗. This implies  () is bounded
and  () =

P
()∈∗() ≤  where  is some

nonnegative constant.
The control law for formation maneuvering is given in the

following theorem.
Theorem 1: Given the formation  () = (∗ ()), let

the initial conditions be such that ((0) (0)) ∈ Ω×R2
where

Ω =
©
 ∈ R | Ψ ( ∗) ≤  ∧
dist( Iso( ∗))  dist(Amb( ∗))} (28)

and  is a sufficiently small positive constant. Then, the
control

 = −+ ̇ − ()  (29)

where
 =  + (1 ⊗ )  (30)

 = − () , (31)

and    0, renders ( ) = 0 exponentially stable and
ensures that (11) and (13) are satisfied.

Proof: First, since  ∗ and  () have necessarily the
same number of edges, the minimal rigidity of  ∗ implies
that  () is minimally rigid for all  ≥ 0. Substituting (29)
into (26) and applying Lemma 2 yields

̇ = − () ()  − 
  (32)

Since  ∗ is infinitesimally rigid, we know from Corollary
1 that  is infinitesimally rigid for  ∈ Ω. Since  is
infinitesimally and minimally rigid for  ∈ Ω, then  ()

has full row rank. Since rank[ ()] = rank
£
 () ()

¤
,

the matrix  () () is invertible for  ∈ Ω; therefore,
̇ ≤ −min

¡
 () ()

¢
  − 

 

≤ −min©4min ¡
¢
 2

ª
 (33)

for (() ()) ∈ Ω×R2, where (25) was used and min (·)
denotes the minimum eigenvalue. From Lemma 3 and the
negative definiteness of (33), we know the level surfaces
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of  are invariant [14] and, if ((0) (0)) ∈ Ω×R2,
then (() ()) stays in Ω×R2 for all   0. Thus, from
the form of (33), ( ) = 0 is exponentially stable for
((0) (0)) ∈ Ω×R2 [14]. The exponential stability of
 = 0 implies that  ()→ Iso( ∗) or  ()→ Amb( ∗) as
→∞. However, since (0) ∈ Ω, we have from (28) that
dist((0) Iso( ∗(0)))  dist((0)Amb( ∗(0))) (34)

We know from (33) that () is decreasing or constant
for all  ≥ 0. Due to (34), the energy-like function  ()

defined in (21) would need to increase for a period of time
for  () → Amb( ∗) as  → ∞, which is a contradiction.
Therefore, we know  ()→ Iso( ∗) as →∞ for (0) ∈
Ω.
Finally, since ()→ 0 as →∞ from the above analysis,

we know from (20) that () → 0 as  → ∞. Since  is
bounded, we know from (16) that ̃ is bounded. Therefore,
() is bounded and we have that ()→ 0 as →∞ from
(31). From (30), we then know that  () → (1 ⊗ ) as
 → ∞. Since we have proven that () → 0 as  → ∞, it
follows from (24) that ()− ()→ 0 as →∞. Therefore,
()− ()→ 0 as →∞,  = 1  .
Remark 1: The condition (0) ∈ Ω in Theorem 1 implies

that the actual formation  () needs to be sufficiently close
to a framework in Iso( ∗) at  = 0 to avoid a flip ambiguity
while remaining infinitesimally rigid. Therefore, the set in
(28) exists because it is always possible to select  (0) in this
manner. We note that the local nature of the stability result
in the Cartesian plane is common in the formation control
literature based on rigid graph theory as it is inherent to the
approach; see, e.g., [15], [18], [26]. In practice, the region
of attraction of the control is not necessarily small as can be
seen from simulations for different initial conditions.
Remark 2: The expression for ̇ in (29) is given by

̇ = −̇  − 
 ̇ + (1 ⊗ ̇) (35)

where from (3)
̇ =  () (36)

and from (19) and (23)

̇ = 2() (37)
Remark 3: The control (29) can be written component-

wise as follows

 = ̇ −  −
X

∈N(∗)

[( + 1) ̃

+
¡
2 + 2̃ ̃




¢
̃ ] (38)

where 2 is the 2 × 2 identity matrix and ̃ =  −  ,
( ) ∈ ∗. Thus, the control for each agent does not require
measurement of the absolute position of the agents. Rather,
it only requires that the th agent measure its own velocity
and the relative position/velocity with respect to its neighbors
N (

∗). Note that the minimal rigidity of the graph helps
reduce the size of N (

∗); thus, facilitating the control
implementation for large-scale systems. The control is also
dependent on  and ̇, but since these signals are known a
priori they can be stored on each agent’s onboard computer.

V. TARGET INTERCEPTION

We now turn our attention to the target interception
problem. To this end, we define the target’s relative position
to the leader (i.e., target interception error) as

 :=  −  (39)

and let  := ̇ . Also, let kkL∞ := sup
≥0

k()k for any
piecewise continuous, bounded function  : [0∞] → R

[14]. The theorem below gives the main result of this section.
Theorem 2: Let the initial conditions be such that

((0) (0)) ∈ Ω×R2 where Ω was defined in Theorem
1. Consider the control

 = −+ − ()  (40)

where  was defined in (24),

 =  + 1 ⊗ ( +   )  (41)

 = ̇ − sgn () + 1 ⊗    (42)

 was defined in (31), sgn() = ( (1)       ()),
∀ ∈ R,  (·) is the standard signum function,   

0, and  ≥
√
 k̇ kL∞ . Then, (40) renders ( ) = 0

asymptotically stable and ensures that (11) and (14) are
satisfied.

Proof: First, notice that the differential equations de-
scribing the error system in closed loop with (40)-(42) have a
discontinuous right-hand side. That is, if ̇ = ( ) denotes
the closed-loop system where  = ( ) , then ( ) is
continuous everywhere except in the set {( ) |  = 0}. For
such a system, one can show the existence of generalized
solutions by embedding the differential equations into the
differential inclusions ̇ ∈  [ ] ( ) where  [·] is a non-
empty, compact, convex, upper semicontinuous set-valued
map [25]. In this case, the time derivative of (25) is given
by [25]

̇

∈ 


 [ ] ( )

⊂ () + 
£
+ ()  − ̇

¤ (43)

where (26) was used.
Substituting (40) into (43) along with (31), (41), and (42),

and applying Lemma 2 gives [25]

̇ ⊂ −  − 
 −  [sgn ()

+1 ⊗ ̇ ]

= −  − 
 −  [SGN ()

+1 ⊗ ̇ ]

≤ −  − 
 

+ kk ¡√ k̇ kL∞ − 
¢

(44)

where SGN() = ( (1)       ()), ∀ ∈ R
and

 () =

⎧⎨⎩ 1 for   0
[−1 1] for  = 0
−1 for   0

(45)
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Given that  ≥
√
 k̇ kL∞ , we can follow the proof

of Theorem 1 to show that (44) is negative definite for
((0) (0)) ∈ Ω×R2. Therefore, from Theorem 3.1 in [25],
we know that ( ) = 0 is asymptotically stable. The proof
that (11) holds follows from the same arguments used in the
proof of Theorem 1.
Now, note from (41), that

 =  +  +   (46)

where the subscript  denotes the th element of the corre-
sponding vector. Differentiating (39) and applying (46) yields

̇ =  −  =  − ( + ) = −1 +  (47)

where  := − − . Note that (47) is a stable linear
system with input . Since ( ) = 0 is asymptotically stable,
we can show as in the proof of Theorem 1 that () → 0

as  → ∞. Therefore, () → 0 as  → ∞ and, from (47),
 ()→ 0 as →∞.
Finally, since we know the control (40) ensures () ∈

conv{1() 2()  −1()} as →∞ due to the manner
in which  ∗ is constructed, we conclude from the conver-
gence of (39) to zero that (14) holds.
Remark 4: The control (40) can be written component-

wise as follows

 = − +  ( +   ) +  

−
X
∈N

£

¡
2 + 2̃ ̃




¢
̃

+( + 1) ̃ ]

−sgn( −  −   + 
X
∈N

̃) (48)

where the argument in N(
∗) was omitted for simplicity.

Therefore, a conclusion similar to the one in Remark 3 can
be drawn. The difference here is that the control input for
each agent is also dependent on  and  .

VI. CONCLUSIONS

We constructed new control laws for stabilizing inter-agent
distances to pre-defined values while allowing the formation
to follow a time-varying trajectory or intercept and surround
a moving target on the plane. A leader-follower approach
was used for solving the target interception problem. The
proposed controllers are composed of a formation acquisition
term and a formation maneuvering or target interception
term. In both problems, we measure the relative position
and velocity of agents connected in the infinitesimally and
minimally rigid graph along with the agent’s own absolute
velocity. For formation maneuvering, the desired trajectory
velocity is available to all agents. In the target interception
problem, we also measure the relative position of the target
to the leader and the target absolute velocity. This informa-
tion is broadcast by the leader to all followers. The target
acceleration is assumed to be unknown but bounded.
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