Compare commits
3 Commits
Author | SHA1 | Date |
---|---|---|
|
4d7fdf707d | |
|
6ab468a65e | |
|
6bfea0fb4f |
Binary file not shown.
After Width: | Height: | Size: 40 KiB |
Binary file not shown.
After Width: | Height: | Size: 40 KiB |
Binary file not shown.
After Width: | Height: | Size: 16 KiB |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -48,6 +48,13 @@ menjadi koordinat kartesian untuk dapat dimasukkan dalam state kendali formasi.
|
|||
\end{bmatrix} \label{eq:algo_koordinat}
|
||||
\end{align}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[scale=.2]{BAB3/img/estimate_coordinate.png}
|
||||
\caption{Strategi Penentuan Koordinat Langakah Kedua}
|
||||
\label{fig:strategiPenentuanKoordinat_dua}
|
||||
\end{figure}
|
||||
|
||||
\textbf{Langkah kedua}. Koordinat di Persamaan~\eqref{eq:algo_koordinat} akan menghasilkan bias dikarenakan
|
||||
Persamaan~\eqref{eq:algo_getAngle} tidak mengetahui letak kuadran sudutnya. Menggunakan ilustrasi di Gambar~\ref{fig:strategiPenentuanKoordinat_satu},
|
||||
langkah pertama menghasilkan dua kemungkinan koordinat robot $B_1$ dan $B_1'$ .
|
||||
|
@ -71,13 +78,6 @@ menjadi jarak dan akan dibandingkan jarak tersebut dengan informasi jarak dari s
|
|||
berpindah ke $A''$ . Apabila terdapat perbedaan maka kejadian di Persamaan~\eqref{eq:algo_getAngle} diubah kejadian selanjutnya
|
||||
dan mengkoreksi koordinat sebelumnya.
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[scale=.2]{BAB3/img/estimate_coordinate2.png}
|
||||
\caption{Strategi Penentuan Koordinat Langakah Kedua}
|
||||
\label{fig:strategiPenentuanKoordinat_dua}
|
||||
\end{figure}
|
||||
|
||||
\section{Analisa Algoritama Dengan Tetangga Statis}
|
||||
|
||||
Telah dijelaskan pada Bab \ref{bab:empat:Strategi_koordinat_tetangga} bahwa robot bergerak kearah yang random dengan jarak tertentu untuk mengetahui koordinat tetangga.
|
||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,6 @@
|
|||
Andreas Febrian
|
||||
Lia Sadita
|
||||
Fahrurrozi Rahman
|
||||
Andre Tampubolon
|
||||
Erik Dominikus
|
||||
Anggoro Dwi Nur Rohman
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
After Width: | Height: | Size: 52 KiB |
|
@ -0,0 +1,11 @@
|
|||
@Comment{$ biblatex control file $}
|
||||
@Comment{$ biblatex bcf format version 3.7 $}
|
||||
% Do not modify this file!
|
||||
%
|
||||
% This is an auxiliary file used by the 'biblatex' package.
|
||||
% This file may safely be deleted. It will be recreated as
|
||||
% required.
|
||||
|
||||
@Control{biblatex-control,
|
||||
options = {3.7:0:0:1:0:1:1:0:0:0:0:0:3:1:3:1:0:0:3:1:79:+:+:none},
|
||||
}
|
|
@ -0,0 +1,441 @@
|
|||
% $ biblatex auxiliary file $
|
||||
% $ biblatex bbl format version 3.1 $
|
||||
% Do not modify the above lines!
|
||||
%
|
||||
% This is an auxiliary file used by the 'biblatex' package.
|
||||
% This file may safely be deleted. It will be recreated as
|
||||
% required.
|
||||
%
|
||||
\begingroup
|
||||
\makeatletter
|
||||
\@ifundefined{ver@biblatex.sty}
|
||||
{\@latex@error
|
||||
{Missing 'biblatex' package}
|
||||
{The bibliography requires the 'biblatex' package.}
|
||||
\aftergroup\endinput}
|
||||
{}
|
||||
\endgroup
|
||||
|
||||
\datalist[entry]{none/global//global/global}
|
||||
\entry{Parker2003}{article}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=PL}{%
|
||||
family={Parker},
|
||||
familyi={P\bibinitperiod},
|
||||
given={Lynne},
|
||||
giveni={L\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\strng{namehash}{PL1}
|
||||
\strng{fullhash}{PL1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\verb{doi}
|
||||
\verb 10.1007/BF02480877
|
||||
\endverb
|
||||
\field{pages}{1\bibrangedash 5}
|
||||
\field{title}{Current research in multirobot systems}
|
||||
\field{volume}{7}
|
||||
\field{journaltitle}{Artificial Life and Robotics}
|
||||
\field{month}{03}
|
||||
\field{year}{2003}
|
||||
\endentry
|
||||
|
||||
\entry{Guanghua2013}{inproceedings}{}
|
||||
\name{author}{4}{}{%
|
||||
{{hash=GW}{%
|
||||
family={Guanghua},
|
||||
familyi={G\bibinitperiod},
|
||||
given={Wang},
|
||||
giveni={W\bibinitperiod},
|
||||
}}%
|
||||
{{hash=DL}{%
|
||||
family={Deyi},
|
||||
familyi={D\bibinitperiod},
|
||||
given={Li},
|
||||
giveni={L\bibinitperiod},
|
||||
}}%
|
||||
{{hash=WG}{%
|
||||
family={Wenyan},
|
||||
familyi={W\bibinitperiod},
|
||||
given={Gan},
|
||||
giveni={G\bibinitperiod},
|
||||
}}%
|
||||
{{hash=PJ}{%
|
||||
family={Peng},
|
||||
familyi={P\bibinitperiod},
|
||||
given={Jia},
|
||||
giveni={J\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\strng{namehash}{GW+1}
|
||||
\strng{fullhash}{GWDLWGPJ1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\verb{doi}
|
||||
\verb 10.1109/ISDEA.2012.316
|
||||
\endverb
|
||||
\field{isbn}{978-1-4673-4893-5}
|
||||
\field{pages}{1335\bibrangedash 1339}
|
||||
\field{title}{Study on Formation Control of Multi-Robot Systems}
|
||||
\field{month}{01}
|
||||
\field{year}{2013}
|
||||
\endentry
|
||||
|
||||
\entry{6889491}{inproceedings}{}
|
||||
\name{author}{3}{}{%
|
||||
{{hash=WX}{%
|
||||
family={{Wang}},
|
||||
familyi={W\bibinitperiod},
|
||||
given={X.},
|
||||
giveni={X\bibinitperiod},
|
||||
}}%
|
||||
{{hash=YZ}{%
|
||||
family={{Yan}},
|
||||
familyi={Y\bibinitperiod},
|
||||
given={Z.},
|
||||
giveni={Z\bibinitperiod},
|
||||
}}%
|
||||
{{hash=WJ}{%
|
||||
family={{Wang}},
|
||||
familyi={W\bibinitperiod},
|
||||
given={J.},
|
||||
giveni={J\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\keyw{dynamic programming;mobile robots;multi-robot
|
||||
systems;neurocontrollers;optimal control;predictive control;quadratic
|
||||
programming;recurrent neural nets;torque control;trajectory control;model
|
||||
predictive control approach;multirobot formation control problem;simplified
|
||||
dual neural network;leader-follower scheme;desired trajectory
|
||||
tracking;dynamic quadratic optimization problem;one-layer recurrent neural
|
||||
network;optimal control input;Vectors;Lead;Wheels;Neural networks;Robot
|
||||
kinematics;Mathematical model}
|
||||
\strng{namehash}{WXYZWJ1}
|
||||
\strng{fullhash}{WXYZWJ1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{booktitle}{2014 International Joint Conference on Neural Networks
|
||||
(IJCNN)}
|
||||
\verb{doi}
|
||||
\verb 10.1109/IJCNN.2014.6889491
|
||||
\endverb
|
||||
\field{issn}{2161-4393}
|
||||
\field{pages}{3161\bibrangedash 3166}
|
||||
\field{title}{Model predictive control of multi-robot formation based on
|
||||
the simplified dual neural network}
|
||||
\field{year}{2014}
|
||||
\warn{\item Invalid format of field 'month'}
|
||||
\endentry
|
||||
|
||||
\entry{ELFERIK2016117}{article}{}
|
||||
\name{author}{3}{}{%
|
||||
{{hash=FSE}{%
|
||||
family={Ferik},
|
||||
familyi={F\bibinitperiod},
|
||||
given={Sami\bibnamedelima El},
|
||||
giveni={S\bibinitperiod\bibinitdelim E\bibinitperiod},
|
||||
}}%
|
||||
{{hash=NMT}{%
|
||||
family={Nasir},
|
||||
familyi={N\bibinitperiod},
|
||||
given={Mohammad\bibnamedelima Tariq},
|
||||
giveni={M\bibinitperiod\bibinitdelim T\bibinitperiod},
|
||||
}}%
|
||||
{{hash=BU}{%
|
||||
family={Baroudi},
|
||||
familyi={B\bibinitperiod},
|
||||
given={Uthman},
|
||||
giveni={U\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\keyw{Cluster space, Behavioral control, Fuzzy adaptive, Multi-robots}
|
||||
\strng{namehash}{FSENMTBU1}
|
||||
\strng{fullhash}{FSENMTBU1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{abstract}{%
|
||||
Cooperation between autonomous robot vehicles holds several promising
|
||||
advantages like robustness, adaptability, configurability, and scalability.
|
||||
Coordination between the different robots and the individual relative motion
|
||||
represent both the main challenges especially when dealing with formation
|
||||
control and maintenance. Cluster space control provides a simple concept for
|
||||
controlling multi-agent formation. In the classical approach, formation
|
||||
control is the unique task for the multi-agent system. In this paper, the
|
||||
development and application of a novel Behavioral Adaptive Fuzzy-based
|
||||
Cluster Space Control (BAFC) to non-holonomic robots is presented. By
|
||||
applying a fuzzy priority control approach, BAFC deals with two conflicting
|
||||
tasks: formation maintenance and target following. Using priority rules, the
|
||||
fuzzy approach is used to adapt the controller and therefore the behavior of
|
||||
the system, taking into accounts the errors in the formation states and the
|
||||
target following states. The control approach is easy to implement and has
|
||||
been implemented in this paper using SIMULINK real-time platform. The
|
||||
communication between the different agents and the controller is established
|
||||
through Wi-Fi link. Both simulation and experimental results demonstrate the
|
||||
behavioral response where the robot performs the higher priority tasks first.
|
||||
This new approach shows a great performance with a lower control signal when
|
||||
benchmarked with previously known results in the literature.%
|
||||
}
|
||||
\verb{doi}
|
||||
\verb https://doi.org/10.1016/j.asoc.2016.03.018
|
||||
\endverb
|
||||
\field{issn}{1568-4946}
|
||||
\field{pages}{117 \bibrangedash 127}
|
||||
\field{title}{A Behavioral Adaptive Fuzzy controller of multi robots in a
|
||||
cluster space}
|
||||
\verb{url}
|
||||
\verb http://www.sciencedirect.com/science/article/pii/S1568494616301272
|
||||
\endverb
|
||||
\field{volume}{44}
|
||||
\field{journaltitle}{Applied Soft Computing}
|
||||
\field{year}{2016}
|
||||
\endentry
|
||||
|
||||
\entry{YOSHIOKA20085149}{article}{}
|
||||
\name{author}{2}{}{%
|
||||
{{hash=YC}{%
|
||||
family={Yoshioka},
|
||||
familyi={Y\bibinitperiod},
|
||||
given={Chika},
|
||||
giveni={C\bibinitperiod},
|
||||
}}%
|
||||
{{hash=NT}{%
|
||||
family={Namerikawa},
|
||||
familyi={N\bibinitperiod},
|
||||
given={Toru},
|
||||
giveni={T\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\strng{namehash}{YCNT1}
|
||||
\strng{fullhash}{YCNT1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{abstract}{%
|
||||
This paper deals with formation control strategies based on Virtual
|
||||
Structure (VS) for multi-vehicle systems. We propose several control laws for
|
||||
networked multi-nonholonomic vehicle systems in order to achieve VS
|
||||
consensus, VS Flocking and VS Flocking with collision-avoidance. First,
|
||||
Virtual Vehicle for the feedback linearization is considered, and we propose
|
||||
VS consensus and Flocking control laws based on a virtual structure and
|
||||
consensus algorithms. Then, VS Flocking control law considering collision
|
||||
avoidance is proposed and its asymptotical stability is proven. Finally,
|
||||
simulation and experimental results show effectiveness of our proposed
|
||||
approaches.%
|
||||
}
|
||||
\verb{doi}
|
||||
\verb https://doi.org/10.3182/20080706-5-KR-1001.00865
|
||||
\endverb
|
||||
\field{issn}{1474-6670}
|
||||
\field{note}{17th IFAC World Congress}
|
||||
\field{number}{2}
|
||||
\field{pages}{5149 \bibrangedash 5154}
|
||||
\field{title}{Formation Control of Nonholonomic Multi-Vehicle Systems based
|
||||
on Virtual Structure}
|
||||
\verb{url}
|
||||
\verb http://www.sciencedirect.com/science/article/pii/S1474667016397609
|
||||
\endverb
|
||||
\field{volume}{41}
|
||||
\field{journaltitle}{IFAC Proceedings Volumes}
|
||||
\field{year}{2008}
|
||||
\endentry
|
||||
|
||||
\entry{OH2015424}{article}{}
|
||||
\name{author}{3}{}{%
|
||||
{{hash=OKK}{%
|
||||
family={Oh},
|
||||
familyi={O\bibinitperiod},
|
||||
given={Kwang-Kyo},
|
||||
giveni={K\bibinithyphendelim K\bibinitperiod},
|
||||
}}%
|
||||
{{hash=PMC}{%
|
||||
family={Park},
|
||||
familyi={P\bibinitperiod},
|
||||
given={Myoung-Chul},
|
||||
giveni={M\bibinithyphendelim C\bibinitperiod},
|
||||
}}%
|
||||
{{hash=AHS}{%
|
||||
family={Ahn},
|
||||
familyi={A\bibinitperiod},
|
||||
given={Hyo-Sung},
|
||||
giveni={H\bibinithyphendelim S\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\keyw{Formation control, Position-based control, Displacement-based
|
||||
control, Distance-based control}
|
||||
\strng{namehash}{OKKPMCAHS1}
|
||||
\strng{fullhash}{OKKPMCAHS1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{abstract}{%
|
||||
We present a survey of formation control of multi-agent systems. Focusing
|
||||
on the sensing capability and the interaction topology of agents, we
|
||||
categorize the existing results into position-, displacement-, and
|
||||
distance-based control. We then summarize problem formulations, discuss
|
||||
distinctions, and review recent results of the formation control schemes.
|
||||
Further we review some other results that do not fit into the
|
||||
categorization.%
|
||||
}
|
||||
\verb{doi}
|
||||
\verb https://doi.org/10.1016/j.automatica.2014.10.022
|
||||
\endverb
|
||||
\field{issn}{0005-1098}
|
||||
\field{pages}{424 \bibrangedash 440}
|
||||
\field{title}{A survey of multi-agent formation control}
|
||||
\verb{url}
|
||||
\verb http://www.sciencedirect.com/science/article/pii/S0005109814004038
|
||||
\endverb
|
||||
\field{volume}{53}
|
||||
\field{journaltitle}{Automatica}
|
||||
\field{year}{2015}
|
||||
\endentry
|
||||
|
||||
\entry{Oh2014}{article}{}
|
||||
\name{author}{2}{}{%
|
||||
{{hash=OKK}{%
|
||||
family={Oh},
|
||||
familyi={O\bibinitperiod},
|
||||
given={Kwang-Kyo},
|
||||
giveni={K\bibinithyphendelim K\bibinitperiod},
|
||||
}}%
|
||||
{{hash=AHS}{%
|
||||
family={Ahn},
|
||||
familyi={A\bibinitperiod},
|
||||
given={Hyo-Sung},
|
||||
giveni={H\bibinithyphendelim S\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\keyw{formation control, distance-based control, graph rigidity,
|
||||
Hamiltonian systems, gradient systems}
|
||||
\strng{namehash}{OKKAHS1}
|
||||
\strng{fullhash}{OKKAHS1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{abstract}{%
|
||||
SUMMARYWe study the local asymptotic stability of undirected formations of
|
||||
single-integrator and double-integrator modeled agents based on interagent
|
||||
distance control. First, we show that n-dimensional undirected formations of
|
||||
single-integrator modeled agents are locally asymptotically stable under a
|
||||
gradient control law. The stability analysis in this paper reveals that the
|
||||
local asymptotic stability does not require the infinitesimal rigidity of the
|
||||
formations. Second, on the basis of the topological equivalence of a
|
||||
dissipative Hamiltonian system and a gradient system, we show that the local
|
||||
asymptotic stability of undirected formations of double-integrator modeled
|
||||
agents in n-dimensional space is achieved under a gradient-like control law.
|
||||
Simulation results support the validity of the stability analysis. Copyright
|
||||
© 2013 John Wiley \& Sons, Ltd.%
|
||||
}
|
||||
\verb{doi}
|
||||
\verb 10.1002/rnc.2967
|
||||
\endverb
|
||||
\verb{eprint}
|
||||
\verb https://onlinelibrary.wiley.com/doi/pdf/10.1002/rnc.2967
|
||||
\endverb
|
||||
\field{number}{12}
|
||||
\field{pages}{1809\bibrangedash 1820}
|
||||
\field{title}{Distance-based undirected formations of single-integrator and
|
||||
double-integrator modeled agents in n-dimensional space}
|
||||
\verb{url}
|
||||
\verb https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.2967
|
||||
\endverb
|
||||
\field{volume}{24}
|
||||
\field{journaltitle}{International Journal of Robust and Nonlinear Control}
|
||||
\field{year}{2014}
|
||||
\endentry
|
||||
|
||||
\entry{Rozenheck2015}{inproceedings}{}
|
||||
\name{author}{3}{}{%
|
||||
{{hash=RO}{%
|
||||
family={{Rozenheck}},
|
||||
familyi={R\bibinitperiod},
|
||||
given={O.},
|
||||
giveni={O\bibinitperiod},
|
||||
}}%
|
||||
{{hash=ZS}{%
|
||||
family={{Zhao}},
|
||||
familyi={Z\bibinitperiod},
|
||||
given={S.},
|
||||
giveni={S\bibinitperiod},
|
||||
}}%
|
||||
{{hash=ZD}{%
|
||||
family={{Zelazo}},
|
||||
familyi={Z\bibinitperiod},
|
||||
given={D.},
|
||||
giveni={D\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\keyw{gradient methods;multi-agent systems;PI control;velocity
|
||||
control;proportional-integral controller;distance-based formation
|
||||
tracking;multiagent formation control problem;additional velocity reference
|
||||
command;interagent distance constraints;gradient formation
|
||||
controller;formation error dynamics;steady-state formation error;Stability
|
||||
analysis;Steady-state;Symmetric matrices;Aerodynamics;Jacobian
|
||||
matrices;Numerical stability;Asymptotic stability}
|
||||
\strng{namehash}{ROZSZD1}
|
||||
\strng{fullhash}{ROZSZD1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{booktitle}{2015 European Control Conference (ECC)}
|
||||
\verb{doi}
|
||||
\verb 10.1109/ECC.2015.7330781
|
||||
\endverb
|
||||
\field{pages}{1693\bibrangedash 1698}
|
||||
\field{title}{A proportional-integral controller for distance-based
|
||||
formation tracking}
|
||||
\field{year}{2015}
|
||||
\warn{\item Invalid format of field 'month'}
|
||||
\endentry
|
||||
|
||||
\entry{CORREIA20127}{article}{}
|
||||
\name{author}{3}{}{%
|
||||
{{hash=CMD}{%
|
||||
family={Correia},
|
||||
familyi={C\bibinitperiod},
|
||||
given={Mariane\bibnamedelima Dourado},
|
||||
giveni={M\bibinitperiod\bibinitdelim D\bibinitperiod},
|
||||
}}%
|
||||
{{hash=GA}{%
|
||||
family={Gustavo},
|
||||
familyi={G\bibinitperiod},
|
||||
given={André},
|
||||
giveni={A\bibinitperiod},
|
||||
}}%
|
||||
{{hash=CS}{%
|
||||
family={Conceição},
|
||||
familyi={C\bibinitperiod},
|
||||
given={Scolari},
|
||||
giveni={S\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\keyw{Models, Friction, Parameter estimation, Autonomous mobile robots}
|
||||
\strng{namehash}{CMDGACS1}
|
||||
\strng{fullhash}{CMDGACS1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{abstract}{%
|
||||
This paper presents a model of a three-wheeled omnidirectional robot
|
||||
including a static friction model. Besides the modeling is presented a
|
||||
practical approach in order to estimate the coefficients of coulomb and
|
||||
viscous friction, which used sensory information about force and velocity of
|
||||
the robot's center of mass. The proposed model model has the voltages of the
|
||||
motors as inputs and the linear and angular velocities of the robot as
|
||||
outputs. Actual results and simulation with the estimated model are compared
|
||||
to demonstrate the performance of the proposed modeling.%
|
||||
}
|
||||
\verb{doi}
|
||||
\verb https://doi.org/10.3182/20120905-3-HR-2030.00002
|
||||
\endverb
|
||||
\field{issn}{1474-6670}
|
||||
\field{note}{10th IFAC Symposium on Robot Control}
|
||||
\field{number}{22}
|
||||
\field{pages}{7 \bibrangedash 12}
|
||||
\field{title}{Modeling of a Three Wheeled Omnidirectional Robot Including
|
||||
Friction Models}
|
||||
\verb{url}
|
||||
\verb http://www.sciencedirect.com/science/article/pii/S1474667016335807
|
||||
\endverb
|
||||
\field{volume}{45}
|
||||
\field{journaltitle}{IFAC Proceedings Volumes}
|
||||
\field{year}{2012}
|
||||
\endentry
|
||||
\enddatalist
|
||||
\endinput
|
Binary file not shown.
|
@ -0,0 +1,92 @@
|
|||
<?xml version="1.0" standalone="yes"?>
|
||||
<!-- logreq request file -->
|
||||
<!-- logreq version 1.0 / dtd version 1.0 -->
|
||||
<!-- Do not edit this file! -->
|
||||
<!DOCTYPE requests [
|
||||
<!ELEMENT requests (internal | external)*>
|
||||
<!ELEMENT internal (generic, (provides | requires)*)>
|
||||
<!ELEMENT external (generic, cmdline?, input?, output?, (provides | requires)*)>
|
||||
<!ELEMENT cmdline (binary, (option | infile | outfile)*)>
|
||||
<!ELEMENT input (file)+>
|
||||
<!ELEMENT output (file)+>
|
||||
<!ELEMENT provides (file)+>
|
||||
<!ELEMENT requires (file)+>
|
||||
<!ELEMENT generic (#PCDATA)>
|
||||
<!ELEMENT binary (#PCDATA)>
|
||||
<!ELEMENT option (#PCDATA)>
|
||||
<!ELEMENT infile (#PCDATA)>
|
||||
<!ELEMENT outfile (#PCDATA)>
|
||||
<!ELEMENT file (#PCDATA)>
|
||||
<!ATTLIST requests
|
||||
version CDATA #REQUIRED
|
||||
>
|
||||
<!ATTLIST internal
|
||||
package CDATA #REQUIRED
|
||||
priority (9) #REQUIRED
|
||||
active (0 | 1) #REQUIRED
|
||||
>
|
||||
<!ATTLIST external
|
||||
package CDATA #REQUIRED
|
||||
priority (1 | 2 | 3 | 4 | 5 | 6 | 7 | 8) #REQUIRED
|
||||
active (0 | 1) #REQUIRED
|
||||
>
|
||||
<!ATTLIST provides
|
||||
type (static | dynamic | editable) #REQUIRED
|
||||
>
|
||||
<!ATTLIST requires
|
||||
type (static | dynamic | editable) #REQUIRED
|
||||
>
|
||||
<!ATTLIST file
|
||||
type CDATA #IMPLIED
|
||||
>
|
||||
]>
|
||||
<requests version="1.0">
|
||||
<internal package="biblatex" priority="9" active="0">
|
||||
<generic>latex</generic>
|
||||
<provides type="dynamic">
|
||||
<file>article.aux</file>
|
||||
<file>article-blx.bib</file>
|
||||
</provides>
|
||||
<requires type="dynamic">
|
||||
<file>article.bbl</file>
|
||||
</requires>
|
||||
<requires type="static">
|
||||
<file>blx-dm.def</file>
|
||||
<file>blx-compat.def</file>
|
||||
<file>blx-bibtex.def</file>
|
||||
<file>biblatex.def</file>
|
||||
<file>standard.bbx</file>
|
||||
<file>numeric.bbx</file>
|
||||
<file>numeric.cbx</file>
|
||||
<file>biblatex.cfg</file>
|
||||
<file>english.lbx</file>
|
||||
</requires>
|
||||
</internal>
|
||||
<external package="biblatex" priority="5" active="0">
|
||||
<generic>bibtex</generic>
|
||||
<cmdline>
|
||||
<binary>bibtex</binary>
|
||||
<option>-min-crossrefs 2</option>
|
||||
<infile>article</infile>
|
||||
</cmdline>
|
||||
<input>
|
||||
<file>article.aux</file>
|
||||
</input>
|
||||
<output>
|
||||
<file>article.bbl</file>
|
||||
</output>
|
||||
<provides type="dynamic">
|
||||
<file>article.bbl</file>
|
||||
</provides>
|
||||
<requires type="dynamic">
|
||||
<file>article.aux</file>
|
||||
<file>article-blx.bib</file>
|
||||
</requires>
|
||||
<requires type="editable">
|
||||
<file>OTHER/references.bib</file>
|
||||
</requires>
|
||||
<requires type="static">
|
||||
<file>biblatex.bst</file>
|
||||
</requires>
|
||||
</external>
|
||||
</requests>
|
|
@ -0,0 +1,89 @@
|
|||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Journal Article
|
||||
% LaTeX Template
|
||||
% Version 1.4 (15/5/16)
|
||||
%
|
||||
% This template has been downloaded from:
|
||||
% http://www.LaTeXTemplates.com
|
||||
%
|
||||
% Original author:
|
||||
% Frits Wenneker (http://www.howtotex.com) with extensive modifications by
|
||||
% Vel (vel@LaTeXTemplates.com)
|
||||
%
|
||||
% License:
|
||||
% CC BY-NC-SA 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0/)
|
||||
%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
%----------------------------------------------------------------------------------------
|
||||
% PACKAGES AND OTHER DOCUMENT CONFIGURATIONS
|
||||
%----------------------------------------------------------------------------------------
|
||||
|
||||
\documentclass[twoside,twocolumn]{article}
|
||||
|
||||
\usepackage{uithesis}
|
||||
\usepackage{blindtext} % Package to generate dummy text throughout this template
|
||||
|
||||
\addbibresource{OTHER/references.bib}
|
||||
\input{laporan_setting}
|
||||
\include{hype.indonesia}
|
||||
%----------------------------------------------------------------------------------------
|
||||
% TITLE SECTION
|
||||
%----------------------------------------------------------------------------------------
|
||||
|
||||
\setlength{\droptitle}{-4\baselineskip} % Move the title up
|
||||
|
||||
\pretitle{\begin{center}\Huge\bfseries} % Article title formatting
|
||||
\posttitle{\end{center}} % Article title closing formatting
|
||||
\title{\Large\Judul} % Article title
|
||||
\author{%
|
||||
\textsc{\Penulis} \\[1ex] % Your name
|
||||
%\thanks{A thank you or further information} \\[1ex] % Your name
|
||||
\normalsize \NamaUni \\ % Your institution
|
||||
% \normalsize \href{mailto:john@smith.com}{john@smith.com} % Your email address
|
||||
%\and % Uncomment if 2 authors are required, duplicate these 4 lines if more
|
||||
%\textsc{Jane Smith}\thanks{Corresponding author} \\[1ex] % Second author's name
|
||||
%\normalsize University of Utah \\ % Second author's institution
|
||||
%\normalsize \href{mailto:jane@smith.com}{jane@smith.com} % Second author's email address
|
||||
}
|
||||
\date{\today} % Leave empty to omit a date
|
||||
\renewcommand{\maketitlehookd}{%
|
||||
\begin{abstract}
|
||||
% \noindent \blindtext % Dummy abstract text - replace \blindtext with your abstract text
|
||||
Penelitian ini ditujukan untuk mengembangkan algoritma kendali formasi berdasarkan jarak
|
||||
pada multi mobile robot dimana setiap robot hanya bisa mendeteksi tetangganya saja.
|
||||
Kendali formasi berdasarkan jarak diterapkan pada model holonomic mobile robot
|
||||
menggunakan \textit{omniwheel}.
|
||||
Algoritma \textit{cosinus} digunakan untuk menemukan koordinat tetangga
|
||||
pada kondisi awal.
|
||||
Hasil percobaan dibuktikan secara grafik dari perbandingan menggunakan algoritma dan tidak, bahwa
|
||||
penerapan algoritma dapat mendeteksi koordinat tetangga pada kondisi awal
|
||||
dan tidak mempengaruhi kendali formasi.
|
||||
\end{abstract}
|
||||
}
|
||||
|
||||
%----------------------------------------------------------------------------------------
|
||||
|
||||
\begin{document}
|
||||
|
||||
% Print the title
|
||||
\maketitle
|
||||
|
||||
%----------------------------------------------------------------------------------------
|
||||
% ARTICLE CONTENTS
|
||||
%----------------------------------------------------------------------------------------
|
||||
\input{BAB1/art_pendahuluan}
|
||||
\input{BAB4/art_metode}
|
||||
\input{BAB5/art_hasil}
|
||||
% \input{BAB5/art_diskusi}
|
||||
|
||||
%----------------------------------------------------------------------------------------
|
||||
% REFERENCE LIST
|
||||
%----------------------------------------------------------------------------------------
|
||||
\renewcommand{\bibname}{\mybibname}
|
||||
\section{\bibname}
|
||||
\printbibliography[heading=none]
|
||||
|
||||
%----------------------------------------------------------------------------------------
|
||||
|
||||
\end{document}
|
|
@ -0,0 +1,11 @@
|
|||
@Comment{$ biblatex control file $}
|
||||
@Comment{$ biblatex bcf format version 3.7 $}
|
||||
% Do not modify this file!
|
||||
%
|
||||
% This is an auxiliary file used by the 'biblatex' package.
|
||||
% This file may safely be deleted. It will be recreated as
|
||||
% required.
|
||||
|
||||
@Control{biblatex-control,
|
||||
options = {3.7:0:0:1:0:1:1:0:0:1:0:2:3:1:3:1:0:0:3:1:79:+:+:nyt},
|
||||
}
|
|
@ -0,0 +1,90 @@
|
|||
% $ biblatex auxiliary file $
|
||||
% $ biblatex bbl format version 3.1 $
|
||||
% Do not modify the above lines!
|
||||
%
|
||||
% This is an auxiliary file used by the 'biblatex' package.
|
||||
% This file may safely be deleted. It will be recreated as
|
||||
% required.
|
||||
%
|
||||
\begingroup
|
||||
\makeatletter
|
||||
\@ifundefined{ver@biblatex.sty}
|
||||
{\@latex@error
|
||||
{Missing 'biblatex' package}
|
||||
{The bibliography requires the 'biblatex' package.}
|
||||
\aftergroup\endinput}
|
||||
{}
|
||||
\endgroup
|
||||
|
||||
\datalist[entry]{nyt/global//global/global}
|
||||
\entry{Jim1999}{inbook}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=LJA}{%
|
||||
family={Ledin},
|
||||
familyi={L\bibinitperiod},
|
||||
given={Jim\bibnamedelima A.},
|
||||
giveni={J\bibinitperiod\bibinitdelim A\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\strng{namehash}{LJA1}
|
||||
\strng{fullhash}{LJA1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{labelyear}{1999}
|
||||
\field{labeldatesource}{}
|
||||
\field{sortinit}{L}
|
||||
\field{sortinithash}{L}
|
||||
\field{booktitle}{Embedded Systems Programming}
|
||||
\field{title}{Hardware-in-the-Loop Simulation}
|
||||
\field{year}{1999}
|
||||
\warn{\item Invalid format of field 'month'}
|
||||
\endentry
|
||||
|
||||
\entry{Rozenheck2015}{inproceedings}{}
|
||||
\name{author}{3}{}{%
|
||||
{{hash=RO}{%
|
||||
family={{Rozenheck}},
|
||||
familyi={R\bibinitperiod},
|
||||
given={O.},
|
||||
giveni={O\bibinitperiod},
|
||||
}}%
|
||||
{{hash=ZS}{%
|
||||
family={{Zhao}},
|
||||
familyi={Z\bibinitperiod},
|
||||
given={S.},
|
||||
giveni={S\bibinitperiod},
|
||||
}}%
|
||||
{{hash=ZD}{%
|
||||
family={{Zelazo}},
|
||||
familyi={Z\bibinitperiod},
|
||||
given={D.},
|
||||
giveni={D\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\keyw{gradient methods;multi-agent systems;PI control;velocity
|
||||
control;proportional-integral controller;distance-based formation
|
||||
tracking;multiagent formation control problem;additional velocity reference
|
||||
command;interagent distance constraints;gradient formation
|
||||
controller;formation error dynamics;steady-state formation error;Stability
|
||||
analysis;Steady-state;Symmetric matrices;Aerodynamics;Jacobian
|
||||
matrices;Numerical stability;Asymptotic stability}
|
||||
\strng{namehash}{ROZSZD1}
|
||||
\strng{fullhash}{ROZSZD1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{labelyear}{2015}
|
||||
\field{labeldatesource}{}
|
||||
\field{sortinit}{R}
|
||||
\field{sortinithash}{R}
|
||||
\field{booktitle}{2015 European Control Conference (ECC)}
|
||||
\verb{doi}
|
||||
\verb 10.1109/ECC.2015.7330781
|
||||
\endverb
|
||||
\field{pages}{1693\bibrangedash 1698}
|
||||
\field{title}{A proportional-integral controller for distance-based
|
||||
formation tracking}
|
||||
\field{year}{2015}
|
||||
\warn{\item Invalid format of field 'month'}
|
||||
\endentry
|
||||
\enddatalist
|
||||
\endinput
|
|
@ -0,0 +1,111 @@
|
|||
\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}
|
||||
\headcommand {\beamer@framepages {1}{1}}
|
||||
\headcommand {\beamer@sectionpages {1}{1}}
|
||||
\headcommand {\beamer@subsectionpages {1}{1}}
|
||||
\headcommand {\sectionentry {1}{Pendahuluan}{2}{Pendahuluan}{0}}
|
||||
\headcommand {\beamer@subsectionpages {2}{1}}
|
||||
\headcommand {\beamer@subsectionentry {0}{1}{1}{2}{Latar Belakang}}
|
||||
\headcommand {\slideentry {1}{1}{1}{2/2}{Latar Belakang}{0}}
|
||||
\headcommand {\beamer@framepages {2}{2}}
|
||||
\headcommand {\slideentry {1}{1}{2}{3/3}{Latar Belakang}{0}}
|
||||
\headcommand {\beamer@framepages {3}{3}}
|
||||
\headcommand {\slideentry {1}{1}{3}{4/4}{Latar Belakang}{0}}
|
||||
\headcommand {\beamer@framepages {4}{4}}
|
||||
\headcommand {\slideentry {1}{1}{4}{5/5}{Latar Belakang}{0}}
|
||||
\headcommand {\beamer@framepages {5}{5}}
|
||||
\headcommand {\beamer@subsectionpages {2}{5}}
|
||||
\headcommand {\beamer@subsectionentry {0}{1}{2}{6}{Identifikasi dan Perumusan Masalah}}
|
||||
\headcommand {\slideentry {1}{2}{1}{6/6}{Identifikasi dan Perumusan Masalah}{0}}
|
||||
\headcommand {\beamer@framepages {6}{6}}
|
||||
\headcommand {\slideentry {1}{2}{2}{7/7}{Identifikasi dan Perumusan Masalah}{0}}
|
||||
\headcommand {\beamer@framepages {7}{7}}
|
||||
\headcommand {\slideentry {1}{2}{3}{8/8}{Identifikasi dan Perumusan Masalah}{0}}
|
||||
\headcommand {\beamer@framepages {8}{8}}
|
||||
\headcommand {\slideentry {1}{2}{4}{9/9}{Identifikasi dan Perumusan Masalah}{0}}
|
||||
\headcommand {\beamer@framepages {9}{9}}
|
||||
\headcommand {\beamer@subsectionpages {6}{9}}
|
||||
\headcommand {\beamer@subsectionentry {0}{1}{3}{10}{Tujuan dan Manfaat}}
|
||||
\headcommand {\slideentry {1}{3}{1}{10/10}{Tujuan dan Manfaat}{0}}
|
||||
\headcommand {\beamer@framepages {10}{10}}
|
||||
\headcommand {\slideentry {1}{3}{2}{11/11}{Tujuan dan Manfaat}{0}}
|
||||
\headcommand {\beamer@framepages {11}{11}}
|
||||
\headcommand {\beamer@sectionpages {2}{11}}
|
||||
\headcommand {\beamer@subsectionpages {10}{11}}
|
||||
\headcommand {\sectionentry {2}{Krangka Konsep Penelitian}{12}{Krangka Konsep Penelitian}{0}}
|
||||
\headcommand {\slideentry {2}{0}{1}{12/12}{}{0}}
|
||||
\headcommand {\beamer@framepages {12}{12}}
|
||||
\headcommand {\slideentry {2}{0}{2}{13/13}{}{0}}
|
||||
\headcommand {\beamer@framepages {13}{13}}
|
||||
\headcommand {\beamer@subsectionpages {12}{13}}
|
||||
\headcommand {\beamer@subsectionentry {0}{2}{1}{14}{Definisi Permasalahan Kendali Formasi}}
|
||||
\headcommand {\slideentry {2}{1}{1}{14/14}{Definisi Permasalahan Kendali Formasi}{0}}
|
||||
\headcommand {\beamer@framepages {14}{14}}
|
||||
\headcommand {\slideentry {2}{1}{2}{15/15}{Definisi Permasalahan Kendali Formasi}{0}}
|
||||
\headcommand {\beamer@framepages {15}{15}}
|
||||
\headcommand {\beamer@subsectionpages {14}{15}}
|
||||
\headcommand {\beamer@subsectionentry {0}{2}{2}{16}{Permasalah dan Solusi}}
|
||||
\headcommand {\slideentry {2}{2}{1}{16/16}{Permasalah dan Solusi}{0}}
|
||||
\headcommand {\beamer@framepages {16}{16}}
|
||||
\headcommand {\slideentry {2}{2}{2}{17/17}{Permasalah dan Solusi}{0}}
|
||||
\headcommand {\beamer@framepages {17}{17}}
|
||||
\headcommand {\beamer@sectionpages {12}{17}}
|
||||
\headcommand {\beamer@subsectionpages {16}{17}}
|
||||
\headcommand {\sectionentry {3}{Kajian Pustaka}{18}{Kajian Pustaka}{0}}
|
||||
\headcommand {\beamer@subsectionpages {18}{17}}
|
||||
\headcommand {\beamer@subsectionentry {0}{3}{1}{18}{Pemodelan Robot}}
|
||||
\headcommand {\slideentry {3}{1}{1}{18/18}{Pemodelan Robot}{0}}
|
||||
\headcommand {\beamer@framepages {18}{18}}
|
||||
\headcommand {\slideentry {3}{1}{2}{19/19}{Pemodelan Robot}{0}}
|
||||
\headcommand {\beamer@framepages {19}{19}}
|
||||
\headcommand {\slideentry {3}{1}{3}{20/20}{Pemodelan Robot}{0}}
|
||||
\headcommand {\beamer@framepages {20}{20}}
|
||||
\headcommand {\slideentry {3}{1}{4}{21/21}{Pemodelan Robot}{0}}
|
||||
\headcommand {\beamer@framepages {21}{21}}
|
||||
\headcommand {\beamer@sectionpages {18}{21}}
|
||||
\headcommand {\beamer@subsectionpages {18}{21}}
|
||||
\headcommand {\sectionentry {4}{Metode Penelitian}{22}{Metode Penelitian}{0}}
|
||||
\headcommand {\beamer@subsectionpages {22}{21}}
|
||||
\headcommand {\beamer@subsectionentry {0}{4}{1}{22}{Prangkat Percobaan}}
|
||||
\headcommand {\slideentry {4}{1}{1}{22/22}{Prangkat Percobaan}{0}}
|
||||
\headcommand {\beamer@framepages {22}{22}}
|
||||
\headcommand {\slideentry {4}{1}{2}{23/23}{Prangkat Percobaan}{0}}
|
||||
\headcommand {\beamer@framepages {23}{23}}
|
||||
\headcommand {\slideentry {4}{1}{3}{24/24}{Prangkat Percobaan}{0}}
|
||||
\headcommand {\beamer@framepages {24}{24}}
|
||||
\headcommand {\beamer@subsectionpages {22}{24}}
|
||||
\headcommand {\beamer@subsectionentry {0}{4}{2}{25}{Strategi Kendali Multi Robot}}
|
||||
\headcommand {\slideentry {4}{2}{1}{25/25}{Strategi Kendali Multi Robot}{0}}
|
||||
\headcommand {\beamer@framepages {25}{25}}
|
||||
\headcommand {\slideentry {4}{2}{2}{26/26}{Strategi Kendali Multi Robot}{0}}
|
||||
\headcommand {\beamer@framepages {26}{26}}
|
||||
\headcommand {\slideentry {4}{2}{3}{27/27}{Strategi Kendali Multi Robot}{0}}
|
||||
\headcommand {\beamer@framepages {27}{27}}
|
||||
\headcommand {\slideentry {4}{2}{4}{28/28}{Strategi Kendali Multi Robot}{0}}
|
||||
\headcommand {\beamer@framepages {28}{28}}
|
||||
\headcommand {\slideentry {4}{2}{5}{29/29}{Strategi Kendali Multi Robot}{0}}
|
||||
\headcommand {\beamer@framepages {29}{29}}
|
||||
\headcommand {\beamer@subsectionpages {25}{29}}
|
||||
\headcommand {\beamer@subsectionentry {0}{4}{3}{30}{Strategi Uji Coba}}
|
||||
\headcommand {\slideentry {4}{3}{1}{30/30}{Strategi Uji Coba}{0}}
|
||||
\headcommand {\beamer@framepages {30}{30}}
|
||||
\headcommand {\slideentry {4}{3}{2}{31/31}{Strategi Uji Coba}{0}}
|
||||
\headcommand {\beamer@framepages {31}{31}}
|
||||
\headcommand {\slideentry {4}{3}{3}{32/32}{Strategi Uji Coba}{0}}
|
||||
\headcommand {\beamer@framepages {32}{32}}
|
||||
\headcommand {\slideentry {4}{3}{4}{33/33}{Strategi Uji Coba}{0}}
|
||||
\headcommand {\beamer@framepages {33}{33}}
|
||||
\headcommand {\beamer@sectionpages {22}{33}}
|
||||
\headcommand {\beamer@subsectionpages {30}{33}}
|
||||
\headcommand {\sectionentry {5}{End}{34}{End}{0}}
|
||||
\headcommand {\slideentry {5}{0}{1}{34/34}{}{0}}
|
||||
\headcommand {\beamer@framepages {34}{34}}
|
||||
\headcommand {\beamer@sectionpages {34}{34}}
|
||||
\headcommand {\beamer@subsectionpages {34}{34}}
|
||||
\headcommand {\sectionentry {6}{References}{35}{References}{0}}
|
||||
\headcommand {\slideentry {6}{0}{0}{35/35}{}{0}}
|
||||
\headcommand {\beamer@framepages {35}{35}}
|
||||
\headcommand {\beamer@partpages {1}{35}}
|
||||
\headcommand {\beamer@subsectionpages {34}{35}}
|
||||
\headcommand {\beamer@sectionpages {34}{35}}
|
||||
\headcommand {\beamer@documentpages {35}}
|
||||
\headcommand {\gdef \inserttotalframenumber {35}}
|
Binary file not shown.
|
@ -0,0 +1,93 @@
|
|||
<?xml version="1.0" standalone="yes"?>
|
||||
<!-- logreq request file -->
|
||||
<!-- logreq version 1.0 / dtd version 1.0 -->
|
||||
<!-- Do not edit this file! -->
|
||||
<!DOCTYPE requests [
|
||||
<!ELEMENT requests (internal | external)*>
|
||||
<!ELEMENT internal (generic, (provides | requires)*)>
|
||||
<!ELEMENT external (generic, cmdline?, input?, output?, (provides | requires)*)>
|
||||
<!ELEMENT cmdline (binary, (option | infile | outfile)*)>
|
||||
<!ELEMENT input (file)+>
|
||||
<!ELEMENT output (file)+>
|
||||
<!ELEMENT provides (file)+>
|
||||
<!ELEMENT requires (file)+>
|
||||
<!ELEMENT generic (#PCDATA)>
|
||||
<!ELEMENT binary (#PCDATA)>
|
||||
<!ELEMENT option (#PCDATA)>
|
||||
<!ELEMENT infile (#PCDATA)>
|
||||
<!ELEMENT outfile (#PCDATA)>
|
||||
<!ELEMENT file (#PCDATA)>
|
||||
<!ATTLIST requests
|
||||
version CDATA #REQUIRED
|
||||
>
|
||||
<!ATTLIST internal
|
||||
package CDATA #REQUIRED
|
||||
priority (9) #REQUIRED
|
||||
active (0 | 1) #REQUIRED
|
||||
>
|
||||
<!ATTLIST external
|
||||
package CDATA #REQUIRED
|
||||
priority (1 | 2 | 3 | 4 | 5 | 6 | 7 | 8) #REQUIRED
|
||||
active (0 | 1) #REQUIRED
|
||||
>
|
||||
<!ATTLIST provides
|
||||
type (static | dynamic | editable) #REQUIRED
|
||||
>
|
||||
<!ATTLIST requires
|
||||
type (static | dynamic | editable) #REQUIRED
|
||||
>
|
||||
<!ATTLIST file
|
||||
type CDATA #IMPLIED
|
||||
>
|
||||
]>
|
||||
<requests version="1.0">
|
||||
<internal package="biblatex" priority="9" active="0">
|
||||
<generic>latex</generic>
|
||||
<provides type="dynamic">
|
||||
<file>presentasi.aux</file>
|
||||
<file>presentasi-blx.bib</file>
|
||||
</provides>
|
||||
<requires type="dynamic">
|
||||
<file>presentasi.bbl</file>
|
||||
</requires>
|
||||
<requires type="static">
|
||||
<file>blx-dm.def</file>
|
||||
<file>blx-compat.def</file>
|
||||
<file>blx-bibtex.def</file>
|
||||
<file>biblatex.def</file>
|
||||
<file>standard.bbx</file>
|
||||
<file>authoryear.bbx</file>
|
||||
<file>authoryear-icomp.bbx</file>
|
||||
<file>authoryear-icomp.cbx</file>
|
||||
<file>biblatex.cfg</file>
|
||||
<file>english.lbx</file>
|
||||
</requires>
|
||||
</internal>
|
||||
<external package="biblatex" priority="5" active="0">
|
||||
<generic>bibtex</generic>
|
||||
<cmdline>
|
||||
<binary>bibtex</binary>
|
||||
<option>-min-crossrefs 2</option>
|
||||
<infile>presentasi</infile>
|
||||
</cmdline>
|
||||
<input>
|
||||
<file>presentasi.aux</file>
|
||||
</input>
|
||||
<output>
|
||||
<file>presentasi.bbl</file>
|
||||
</output>
|
||||
<provides type="dynamic">
|
||||
<file>presentasi.bbl</file>
|
||||
</provides>
|
||||
<requires type="dynamic">
|
||||
<file>presentasi.aux</file>
|
||||
<file>presentasi-blx.bib</file>
|
||||
</requires>
|
||||
<requires type="editable">
|
||||
<file>OTHER/references.bib</file>
|
||||
</requires>
|
||||
<requires type="static">
|
||||
<file>biblatex.bst</file>
|
||||
</requires>
|
||||
</external>
|
||||
</requests>
|
|
@ -0,0 +1,678 @@
|
|||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Beamer Presentation
|
||||
% LaTeX Template
|
||||
% Version 1.0 (10/11/12)
|
||||
%
|
||||
% This template has been downloaded from:
|
||||
% http://www.LaTeXTemplates.com
|
||||
%
|
||||
% License:
|
||||
% CC BY-NC-SA 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0/)
|
||||
%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
%----------------------------------------------------------------------------------------
|
||||
% PACKAGES AND THEMES
|
||||
%----------------------------------------------------------------------------------------
|
||||
|
||||
\documentclass{beamer}
|
||||
% \documentclass[notes]{beamer} % print frame + notes
|
||||
% \documentclass[notes=only]{beamer} % only notes
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% To make presentation in handout mode including note :
|
||||
% \documentclass[handout]{beamer}
|
||||
% \usepackage{pgfpages}
|
||||
% \mode<handout>{%
|
||||
% \pgfpagesuselayout{4 on 1}[a4paper,border shrink=5mm]
|
||||
% \setbeameroption{show notes}
|
||||
% }
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\mode<presentation> {
|
||||
|
||||
% The Beamer class comes with a number of default slide themes
|
||||
% which change the colors and layouts of slides. Below this is a list
|
||||
% of all the themes, uncomment each in turn to see what they look like.
|
||||
|
||||
%\usetheme{default}
|
||||
%\usetheme{AnnArbor}
|
||||
%\usetheme{Antibes}
|
||||
%\usetheme{Bergen}
|
||||
% \usetheme{Berkeley}
|
||||
%\usetheme{Berlin}
|
||||
%\usetheme{Boadilla}
|
||||
% \usetheme{CambridgeUS}
|
||||
% \usetheme{Copenhagen}
|
||||
%\usetheme{Darmstadt}
|
||||
%\usetheme{Dresden}
|
||||
% \usetheme{Frankfurt}
|
||||
%\usetheme{Goettingen}
|
||||
%\usetheme{Hannover}
|
||||
%\usetheme{Ilmenau}
|
||||
%\usetheme{JuanLesPins}
|
||||
%\usetheme{Luebeck}
|
||||
\usetheme{Madrid}
|
||||
%\usetheme{Malmoe}
|
||||
%\usetheme{Marburg}
|
||||
%\usetheme{Montpellier}
|
||||
% \usetheme{PaloAlto}
|
||||
%\usetheme{Pittsburgh}
|
||||
%\usetheme{Rochester}
|
||||
% \usetheme{Singapore}
|
||||
%\usetheme{Szeged}
|
||||
%\usetheme{Warsaw}
|
||||
|
||||
% As well as themes, the Beamer class has a number of color themes
|
||||
% for any slide theme. Uncomment each of these in turn to see how it
|
||||
% changes the colors of your current slide theme.
|
||||
|
||||
%\usecolortheme{albatross}
|
||||
%\usecolortheme{beaver}
|
||||
%\usecolortheme{beetle}
|
||||
%\usecolortheme{crane}
|
||||
%\usecolortheme{dolphin}
|
||||
%\usecolortheme{dove}
|
||||
%\usecolortheme{fly}
|
||||
%\usecolortheme{lily}
|
||||
%\usecolortheme{orchid}
|
||||
%\usecolortheme{rose}
|
||||
%\usecolortheme{seagull}
|
||||
%\usecolortheme{seahorse}
|
||||
%\usecolortheme{whale}
|
||||
%\usecolortheme{wolverine}
|
||||
|
||||
% \setbeamertemplate{footline} % To remove the footer line in all slides uncomment this line
|
||||
% \setbeamertemplate{footline}[page number] % To replace the footer line in all slides with a simple slide count uncomment this line
|
||||
|
||||
%\setbeamertemplate{navigation symbols}{} % To remove the navigation symbols from the bottom of all slides uncomment this line
|
||||
}
|
||||
|
||||
\usepackage{graphicx} % Allows including images
|
||||
\usepackage{booktabs} % Allows the use of \toprule, \midrule and \bottomrule in tables
|
||||
\usepackage{subcaption}
|
||||
\usepackage[backend=bibtex, style=authoryear-icomp,autocite=inline]{biblatex}
|
||||
\usepackage{siunitx}
|
||||
\usepackage{tikz} % To generate the plot from csv
|
||||
|
||||
\addbibresource{OTHER/references.bib}
|
||||
%----------------------------------------------------------------------------------------
|
||||
% TITLE PAGE
|
||||
%----------------------------------------------------------------------------------------
|
||||
|
||||
\title[ ]{Kendali Formasi Murni Berdasarkan Jarak Menggunakan Algoritma Cosinus Pada Sistem Orde Dua} % The short title appears at the bottom of every slide, the full title is only on the title page
|
||||
|
||||
\author{Anggoro Dwi Nur Rohman} % Your name
|
||||
\institute[UB] % Your institution as it will appear on the bottom of every slide, may be shorthand to save space
|
||||
{
|
||||
Universitas Brawijaya \\ % Your institution for the title page
|
||||
\medskip
|
||||
\textit{anggoro\_dwi@student.ub.ac.id} % Your email address
|
||||
}
|
||||
\date{\today} % Date, can be changed to a custom date
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{frame}
|
||||
\titlepage % Print the title page as the first slide
|
||||
\end{frame}
|
||||
\note{}
|
||||
|
||||
%----------------------------------------------------------------------------------------
|
||||
% BAB 1
|
||||
%----------------------------------------------------------------------------------------
|
||||
|
||||
\section{Pendahuluan}
|
||||
\subsection{Latar Belakang}
|
||||
\begin{frame}
|
||||
\frametitle{Next Section}
|
||||
\tableofcontents[currentsubsection]
|
||||
\end{frame}
|
||||
\note{}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Latar Belakang}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[scale=.5]{BAB1/img/presentation_journal1.png}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
\note{
|
||||
Penelitian ini bermula dari jurnal survey oleh Kwang-Kyo dan kawan kawan.
|
||||
Dimana penulis menggolongkan tentang kendali formasi kedalam beberapa klompok.
|
||||
Penggolongan tersebut dirangkum dari beberapa metode yang beliauw pilih.\\
|
||||
|
||||
Beliau menggolongkan kendali formasi tersebut berdasarkan variable yang disensor, variabel yang dikendalikan, metode koordinat, dan metode interaksinya.\\
|
||||
}
|
||||
\begin{frame}
|
||||
\frametitle{Latar Belakang}
|
||||
\begin{columns}[c]
|
||||
\column{.45\textwidth}
|
||||
Kendali formasi dibagi menjadi 3, yaitu :
|
||||
\begin{enumerate}
|
||||
\item Berdasarkan Posisi
|
||||
\item Berdasarkan Perpindahan
|
||||
\item Berdasarkan Jarak
|
||||
\end{enumerate}
|
||||
\column{.45\textwidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[scale=.4]{./BAB1/img/presentation_fig1.png}
|
||||
\end{figure}
|
||||
\end{columns}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[scale=.3]{./BAB1/img/presentation_fig2.png}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
\note{
|
||||
\begin{itemize}
|
||||
\item Posisi \\
|
||||
Variable yang diperoleh dari sensor dan variable yang dikendalikan adalah posisi dari robot.\\
|
||||
koordinat yang digunakan adalah berdasarkan koordinat global. \\
|
||||
kemampuan untuk berkomunikasi tidak begitu dibutuhkan.
|
||||
\item Pergerakan \\
|
||||
Variable yang diperoleh dari sensro dan variable yang dikendalikan adalah posisi relatif terhadap tetangganya. \\
|
||||
Dapat diperhatikan pada gambar dibawah bahwa
|
||||
Koordinat yang digunakan setiap robot harus disearahkan terhadap semua robot dan penyearahan koordinat tersebut berdasarkan koordinat global.\\
|
||||
Kemampuan untuk berkomunkasi dibutuhkan setiap robot untuk bertukar informasi mengenai penyearahan koordinat.
|
||||
\item Jarak \\
|
||||
dapat diperhatikan juga pada gambar dibawah.
|
||||
Variable yang diperoleh dari sensor adalah koordinat relatif terhadap tetangga.\\
|
||||
Variable yang kendalikan adalah jarak terhadap tetangganya.\\
|
||||
Koordinat yang digunakan setiap robot adalah koordinat local atau koordinat robot itu sendiri.\\
|
||||
Kemampuan untuk berkomunikasi sangat dibutuhkan karena setiap robot akan aktif saling bertukar informasi untuk mengetahui koordinat relatif nya masing masing.
|
||||
\end{itemize}
|
||||
Dari ketiga golongan tersebut jika divisualkan berdasarkan kemampuan sensor kemampuan berkomunikasi dapat lihat pada gambar disamping. \\
|
||||
Semakin golongan tersbut keatas makan metode tersebut membutuhkan kemampuan sensor yang tinggi dan semakin kebawah sebaliknya. \\
|
||||
Semakin golongan tersebut ke kanan semakin golongan tersebut membutuhkan kemampuan interaksi yang tinggi dan semakin kekiri sebaliknya. \\
|
||||
|
||||
}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Latar Belakang}
|
||||
\textbf{Rangkuman dan Potensial Permasalahan}\\
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[scale=.55]{BAB1/img/presentation_rangkuman.png}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
\note{
|
||||
Dari ketiga metode tersebut, formasi berdasarkan jarak merupakan metode yang dimungkinkan untuk diterapkan sensor lebih sedikit dari metode lainnya.
|
||||
Teknologi komunikasi sekarang pun juga sudah bisa dikatakan bisa untuk diterapkan pada metode tersebut secara praktiknya.
|
||||
Pemaparan dengan menggunakan model yang lebih real sangat dibutuhkan sebagai kontribusi dalam bidang kendali multi-robot.
|
||||
Dengan harapan penerapan real model tersebut dapat bermanfaat terhadap masyarakat luas.
|
||||
|
||||
}
|
||||
|
||||
\subsection{Identifikasi dan Perumusan Masalah}
|
||||
\begin{frame}
|
||||
\frametitle{Next Section}
|
||||
\tableofcontents[currentsubsection]
|
||||
\end{frame}
|
||||
\note{}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Identifikasi dan Perumusan Masalah}
|
||||
\begin{columns}
|
||||
\column{.45\textwidth}
|
||||
\textbf{Identifikasi} dilakukan menggunakan penelitian sebelumnya oleh \cite{Rozenheck2015}.
|
||||
\begin{align*}
|
||||
\dot{x}_f(t) & = A_f(x)x_f(t)+B_f(x)d+Bv_{ref} \\
|
||||
x_f(t) & = \begin{bmatrix} x & v & \xi_1 & \xi_2 \end{bmatrix}^T \\
|
||||
x & = \begin{bmatrix} x_1^T & \dots & x_n^T \end{bmatrix}^T \mathbb{R}^{2n} \\
|
||||
v & = \dot{x} \\
|
||||
x_i & \in \mathbb{R}^2 \\
|
||||
\end{align*}
|
||||
\textbf{Model yang digunakan}
|
||||
\begin{align*}
|
||||
\dot{x}_i(t) = u_i(t), \quad i = 1, \hdots, n,
|
||||
\end{align*}
|
||||
\column{.45\textwidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[scale=.3]{BAB1/img/presentation_identifikasi_1.png}
|
||||
\includegraphics[scale=.1]{BAB2/img/plotMotion3Robot.png}
|
||||
\end{figure}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
\note{
|
||||
\textbf{Identifikasi} \\
|
||||
Identifikasi dilakukan menggunakan penelitian sebelumnya oleh Bapak Rozenheck.\\
|
||||
Menghasilkan sebuah metode yang menggunakan kendali PI untuk analisis Kendali formasi.\\
|
||||
Metode tersebut menghasilkan formasi pada multi agent tetap terjaga ketika salah satu agent diberikan kecepatan secara konstan dan memberikan respon yang baik ketika pengaturan konstanta PI dengan tepat.
|
||||
Tetapi model yang digunakan masih menggunakan model orde satu, dengan kata lain metode tersebut dimungkinkan untuk diterapkan model yang lebih komplek.
|
||||
|
||||
\textit{Next}
|
||||
}
|
||||
|
||||
\begin{frame}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[scale=.27]{BAB2/img/plotMotion3Robot.png}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
\note{}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Identifikasi dan Perumusan Masalah}
|
||||
\textbf{Batasan-batasan permasalahan sebagai berikut :}
|
||||
\begin{enumerate}
|
||||
\item Variable sensor yang digunakan adalah jarak antar individu robot.
|
||||
\item Komunikasi antar robot diasumsikan ideal, dalam artian percobaan tidak dilakukan diluar jarak jangkauan prangkat komunikasi.
|
||||
\end{enumerate}
|
||||
|
||||
\textbf{Perumusan Masalah:}
|
||||
\begin{enumerate}
|
||||
\item Bagaimanakan strategi untuk kendali formasi apabila variable yang dikendalikan adalah jarak antar robot?.
|
||||
\item Bagaimanakah pergerakan kendali formasi berdasarkan jarak apabila model yang digunakan adalah holonomic mobile robot ?.
|
||||
\end{enumerate}
|
||||
\end{frame}
|
||||
\note{}
|
||||
|
||||
\subsection{Tujuan dan Manfaat}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Next Section}
|
||||
\tableofcontents[currentsubsection]
|
||||
\end{frame}
|
||||
\note{}
|
||||
\begin{frame}
|
||||
\frametitle{Tujuan dan Manfaat}
|
||||
|
||||
\textbf{Tujuan}
|
||||
\begin{enumerate}
|
||||
\item Mengetahui strategi untuk kendali formasi apabila variable yang dikendalikan adalah jarak antar robot.
|
||||
\item Mengetahui pergerakan kendali formasi berdasarkan jarak apabila model yang digunakan adalah holonomic mobile robot.
|
||||
\end{enumerate}
|
||||
|
||||
\textbf{Manfaat}
|
||||
\begin{enumerate}
|
||||
\item Memberikan referensi untuk permasalahan kendali multi-robot, kususnya pada permasalhaan kendali formasi, terhadap model yang lebih nyata.
|
||||
\item Membuka peluang penelitian dibidang kendali mengenai kendali formasi pada kendali multi-robot dilingkungan Fakultas Teknik Elektro, Universitas Brawijaya.
|
||||
\end{enumerate}
|
||||
\end{frame}
|
||||
\note{}
|
||||
|
||||
\section{Krangka Konsep Penelitian}
|
||||
\begin{frame}
|
||||
\frametitle{Next Section}
|
||||
\tableofcontents[currentsection]
|
||||
\end{frame}
|
||||
\note{
|
||||
}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Kerangka Konsep Penelitian}
|
||||
\begin{figure}
|
||||
\input{BAB3/img/structur.tex}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
\note{
|
||||
\frametitle{Krangka Konsep Penelitian}
|
||||
Berikut ini adalah krangka penelitian dimana seperti yang telah diterangkan sebelumnya. \\
|
||||
Berdasarkan literatur oleh Oh, kendali formasi dibagi menjadi tiga bagian. \\
|
||||
Pada metode berdasarkan jarak, penelitian menggunakan simple model telah banyak dilakukan. \\
|
||||
Pengembangan selanjutnya diharapkan menuju ke model real. \\
|
||||
Dalam tahap pengembangan menuju real, diperlukan pengembangan model real. \\
|
||||
Sehingga Fokus penelitian yang saya ambil adalah kendali formasi berdasarkan jarak dengan model real.\\
|
||||
\textit{Next}
|
||||
}
|
||||
\subsection{Definisi Permasalahan Kendali Formasi}
|
||||
\begin{frame}
|
||||
\frametitle{Next Section}
|
||||
\tableofcontents[currentsubsection]
|
||||
\end{frame}
|
||||
\note{}
|
||||
\begin{frame}
|
||||
\frametitle{Definisi Permasalahan}
|
||||
\begin{itemize}
|
||||
\item Dari ketiga kategori tersebut, kendali formasi berbasis jarak sangat dibutuhkan pembahasan
|
||||
mengenai penerapan metode tersebut pada agent yang nyata.
|
||||
\textit{Simple model, Model real,} dan \textit{Real} dapat dikatakan sebuah tahap pengemabangan.
|
||||
\item model agent yang lebih relistik (\textit{Model real}) perlu untuk dipelajari lebih lanjut untuk menambah kepraktisan metode kendali multi-agent berdasarkan jarak.
|
||||
\item Peneliti sebelumnya oleh \cite{Rozenheck2015}, menggunakan \textit{Simple model} untuk mengembangkan kendali multi-robotnya.
|
||||
\item \textbf{Maka, penelitian ini akan difokuskan pada kendali formasi berbasis jarak
|
||||
kendali PI yang telah dilakukan sebelumnya dengan menggunakan model nyata.}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
\note{}
|
||||
|
||||
\subsection{Permasalah dan Solusi}
|
||||
\begin{frame}
|
||||
\frametitle{Next Section}
|
||||
\tableofcontents[currentsubsection]
|
||||
\end{frame}
|
||||
\note{}
|
||||
\begin{frame}
|
||||
\frametitle{Permasalahan dan Solusi}
|
||||
\textbf{Permasalahan}
|
||||
\begin{itemize}
|
||||
\item state yang digunakan pada kendali formasi ,
|
||||
$x_f(t) = \begin{bmatrix} x & v & \xi_1 & \xi_2 \end{bmatrix}^T$,
|
||||
membutuhkan koordinat relatif tetangga.
|
||||
\item Batasan penelitian hanya dapat mengukur jarak terhadap tetangganya.
|
||||
\item Sedangkan koordinat relatif berbentuk kartesian,
|
||||
sehingga koordinat polar yang akan digunakan lalu diubah menjadi kartesian.
|
||||
\item Koordinat polar membutuhkan sudut untuk dapat diubah menjadi kartesian.
|
||||
\item \textbf{Karena itu, dibutuhkan algoritka kusus untuk mendapatkan sudut tersebut}
|
||||
\end{itemize}
|
||||
\textbf{Solusi}
|
||||
\begin{itemize}
|
||||
\item menggunakan hukum cosinus untuk menentukan sudut
|
||||
\item robot saling mengirim informasi kecepatan kepada tetangga digunakan untuk memantau
|
||||
koordinat relatif terhadap tetangga.
|
||||
\item \textbf{Sebagai inisialisasi menggunakan algoritma cosinus. Selebihnya menggunakan komunikasi untuk memantau koordinat relatif tetangga}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
\note{}
|
||||
|
||||
\section{Kajian Pustaka}
|
||||
\subsection{Pemodelan Robot}
|
||||
\begin{frame}
|
||||
\frametitle{Next Section}
|
||||
\tableofcontents[currentsubsection]
|
||||
\end{frame}
|
||||
\note{
|
||||
|
||||
}
|
||||
\begin{frame}
|
||||
\frametitle{Pemodelan Robot}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[scale=.3]{BAB2/img/presentasi_modelRobot_jurnal.png}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
\note{
|
||||
|
||||
\frametitle{Pemodelan Robot}
|
||||
Pemodelan robot merujuk dari penelitian sebelumnya oleh Correia.\\
|
||||
\textit{Next}
|
||||
}
|
||||
\begin{frame}
|
||||
\frametitle{Pemodelan Robot}
|
||||
\textbf{Model Robot}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[scale=.3]{BAB2/img/presentasi_modelRobot_model.png}
|
||||
\end{figure}
|
||||
|
||||
\textbf{Persamaan Newton Orde dua Model Robot}
|
||||
\begin{align*}
|
||||
F_{\dot{x}_r}(t) - B_{\dot{x}_r}\dot{x}_r(t) - C_{\dot{x}_r}sgn(\dot{x}_r(t)) & = M\ddot{x}_r(t) \\
|
||||
F_{\dot{y}_r}(t) - B_{\dot{y}_r}\dot{y}_r(t) - C_{\dot{y}_r}sgn(\dot{y}_r(t)) & = M\ddot{y}_r(t) \\
|
||||
\Gamma(t) - B_{\dot{\theta}}\dot{\theta}(t) - C_{\dot{\theta} }sgn(\dot{\theta}(t) ) & = I\ddot{\theta}(t)
|
||||
\end{align*}
|
||||
\end{frame}
|
||||
\note{
|
||||
Dimana Peneliti mengembangkan sebuah model berdasarkan hukum fisika. \\
|
||||
Dari persamaan tersebut terbagi menjadi 3 persamaan yang mempresentasikan arah gerak robot\\
|
||||
\textit{Next}
|
||||
}
|
||||
\begin{frame}
|
||||
\frametitle{Pemodelan Robot}
|
||||
\textbf{Parameter dan Response}
|
||||
\begin{columns}
|
||||
\column{.45\textwidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[scale=.3]{BAB2/img/presentasi_modelRobot_parameter.png}
|
||||
\end{figure}
|
||||
\column{.45\textwidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[scale=.2]{BAB2/img/presentasi_modelRobot_velocityV.png}
|
||||
\includegraphics[scale=.2]{BAB2/img/presentasi_modelRobot_velocityVn.png}
|
||||
\includegraphics[scale=.2]{BAB2/img/presentasi_modelRobot_velocityW.png}
|
||||
\end{figure}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
\note{
|
||||
Peneliti juga mencantumkan konstanta yang digunakan ketika mengidentifikasi persamaan modelnya.\\
|
||||
Dan disamping ini adalah grafik respon kecepatan setiap arahnya.
|
||||
\textit{Next}
|
||||
}
|
||||
|
||||
\section{Metode Penelitian}
|
||||
\subsection{Prangkat Percobaan}
|
||||
\begin{frame}
|
||||
\frametitle{Next Section}
|
||||
\tableofcontents[currentsubsection]
|
||||
\end{frame}
|
||||
\note{}
|
||||
\begin{frame}
|
||||
\frametitle{Prangkat Percobaan}
|
||||
\textbf{Hardware-in-the-loop} \\
|
||||
Merujuk dari \cite{Jim1999} \\
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[scale=.4]{BAB3/img/hil_graph.png}
|
||||
\end{figure}
|
||||
\begin{itemize}
|
||||
\item Model dijalankan di PC menggunakan bahasa pemrograman Python.
|
||||
\item Sistem Tertanam menggunakan: \\
|
||||
Microcontroller STM3F466 \\
|
||||
ARM Cortex-M4 \\
|
||||
Clock 180Mhz \\
|
||||
Flash Memmory 256K \\
|
||||
Mbed Library dengan RTOS
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
\note{
|
||||
\frametitle{Prangkat Percobaan}
|
||||
\textbf{Hardware in loop} \\
|
||||
\textit{Hardware-in-the-loop} (HIL) adalah metode untuk pengembangan prangkat kendali dengan memanfaatkan model sebagai objek kendalinya. Seperti pada gambar,
|
||||
bahwa HIL terdiri dari dua prangkat, yaitu prangkat untuk menjalankan objek kendali atau dapat
|
||||
disebut sebagai model/plant dan prangkat sistem kontrolnya, dalam kasus ini sistem kontrol menggunakan sistem tertanam (\textit{embedded system}).
|
||||
|
||||
\textit{Next}
|
||||
}
|
||||
\begin{frame}
|
||||
\frametitle{Prangkat Percobaan}
|
||||
\textbf{Hardware-in-the-loop Kendali Formasi} \\
|
||||
\begin{figure}
|
||||
\centering
|
||||
\scalebox{.7}{\input{BAB4/img/Diagram_hil_controller.tex}}
|
||||
\end{figure}
|
||||
\begin{itemize}
|
||||
\item digunakan 3 prangkat sistem tertanam
|
||||
\item Komunikasi dengan PC mempresentasikan aktuator dan sensor
|
||||
\item Komunikasi antar kendali untuk pertukaran informasi
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
\note{
|
||||
\textbf{Hardware-in-the-loop Kendali Formasi} \\
|
||||
Dalam penerapan multi-robot, digunakan 3 perangkat sistem tertanam untuk mempresentasikan kendali 3 robot.
|
||||
Setiap prangkat pengendali akan saling terhubung satu sama lain dan semua prangkat pengendali terhubung dengan prangkat PC.
|
||||
Komunikasi antar prangkat pengendali akan digunakan untuk pertukaran informasi.
|
||||
Sedangkan komunikasi dengan PC akan mempresentasikan aktuator dan sensor untuk setiap prangkat
|
||||
kendali. PC akan merekam setiap keluaran dari model dan masukan dari setiap prangkat kendali
|
||||
sebagai tampilan pergerakan robotnya.
|
||||
\textit{Next}
|
||||
}
|
||||
\subsection{Strategi Kendali Multi Robot}
|
||||
\begin{frame}
|
||||
\frametitle{Next Section}
|
||||
\tableofcontents[currentsubsection]
|
||||
\end{frame}
|
||||
\note{}
|
||||
\begin{frame}
|
||||
\frametitle{Strategi Kendali Multi Robot}
|
||||
\textbf{Kendali Robot} \\
|
||||
\begin{itemize}
|
||||
\item Kendali Robot dengan input koordinat, output koordinat
|
||||
\item Menggunakan State Feedback
|
||||
\end{itemize}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\scalebox{.7}{\input{BAB4/img/statefeedback.tex}}
|
||||
\end{figure}
|
||||
\begin{itemize}
|
||||
\item Sistem robot controlable dan observable
|
||||
\item Menggunakan QLR untuk menentukan konstanta $K_s$
|
||||
\item Menggunakan rumus $N = -[C(A-BK_s)^{-1}B]^{-1}$
|
||||
\item $u < 6/12 volt$
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
\note{
|
||||
\small
|
||||
\textbf{Kendali Robot}
|
||||
\begin{itemize}
|
||||
\item Sperti yang telah diketahui bahwa Kendali formasi menggunakan state koordinat robot untuk dikendalikan.
|
||||
Maka input sistem robot yyang dibutuhkan adalah state tujuan berupa koordinat.
|
||||
Makan sistem kendali robot ini memiliki input koordinat dan output koordinat.
|
||||
\item Untuk mencapai itu digunakan state feedback
|
||||
\item Syarat untuk menggunakan state feedback harus controlable dan observable. \\
|
||||
Untuk mengetahui nya parameter tersebut digunakan sistem dari penelitian sebelumnya.
|
||||
\item State feedback akan dioptimalisasi menggunakan metode QLR untuk menentukan konstanta $K_s$
|
||||
\item Menggunakan inferse dari sistem akan menemukan konstanta N.
|
||||
\item Dari kenyataanya bahwa $u$ memiliki batasan input, yaitu sekitar besaran 6-12 volt. \\
|
||||
Akan tetapi dalam kalkulasinya hasil perhitangan dari state feedback akan menghasilkan nilai $u$
|
||||
yang melebihi batasan tersebut. Maka secara program akan diberikan batasan nilai input dalam persamaan tersebut.
|
||||
\end{itemize}
|
||||
|
||||
\textit{Next}
|
||||
}
|
||||
\begin{frame}
|
||||
\frametitle{Strategi Kendali Multi Robot}
|
||||
\textbf{Respon Kendali Robot} \\
|
||||
$ r = \begin{bmatrix}6 & -3 & -90 &0 &0 &0\end{bmatrix} $
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[scale=.5]{BAB4/img/presentasi_respon_robot.png}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
\note{
|
||||
\textbf{Respon Kendali Robot} \\
|
||||
|
||||
berikut adalah respon dari kendali robot.
|
||||
|
||||
\textit{Next}
|
||||
}
|
||||
\begin{frame}
|
||||
\frametitle{Strategi Kendali Multi Robot}
|
||||
\textbf{Strategi penentuan koordinat tetangga}
|
||||
\begin{columns}
|
||||
\column{.2\textwidth}
|
||||
\begin{figure}
|
||||
\includegraphics[scale=.3]{BAB3/img/estimate_coordinate.png}
|
||||
\end{figure}
|
||||
\column{.45\textwidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[scale=.3]{BAB4/img/presentasi_algoritma_cosinus.png}
|
||||
\end{figure}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
\note{
|
||||
\textbf{Strategi penentuan koordinat tetangga}
|
||||
|
||||
\begin{itemize}
|
||||
\item Pertama tama akan diconfigurasi komunikasi antar robot
|
||||
\item Lalu digenerate random direction
|
||||
\item setelah itu mengukur jarak tetangga dengan informasi konfigurasi komunikasi
|
||||
\item lalu dari hasil direksi yang random digunakan untuk menggerakkan robot dengan jarak yang telah ditentukan.
|
||||
\item Setelah robot mencapai jarak tersebut dilakukan kembali pengukura jarak
|
||||
\item Dari kedua hasil jarak tersebut dikalkulasi dengan rumus cosinus untuk mendapat kan sudut
|
||||
\item dari sudut tersebut diubah menjadi koordinat kartesian
|
||||
\end{itemize}
|
||||
}
|
||||
\begin{frame}
|
||||
\frametitle{Strategi Kendali Multi Robot}
|
||||
\textbf{Implementasi}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\scalebox{.65}{\input{BAB4/img/implement-control.tex}}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
\note{
|
||||
\textbf{Implementasi}
|
||||
\begin{itemize}
|
||||
\item Implementasi akan menggabungkan antara state space kendali robot dengan kendali formasi.
|
||||
\item Kendali Robot sebagai kendali tingat akhir dan kendali formasi sebagai kendali tingkat awal
|
||||
\item Kendali ini akan diterapkan ke robot secara individual. Karena kendali utama membutuhkan state koordinat dari individulain, maka state koordinat tersebut digantikan dengan sensor dan algoritma yang dikembangkan
|
||||
\end{itemize}
|
||||
}
|
||||
|
||||
\subsection{Strategi Uji Coba}
|
||||
\begin{frame}
|
||||
\frametitle{Next Section}
|
||||
\tableofcontents[currentsubsection]
|
||||
\end{frame}
|
||||
\note{}
|
||||
\begin{frame}
|
||||
\frametitle{Strategi Uji Coba}
|
||||
\textbf{Analisa Kesetabilan Model} \\
|
||||
\begin{columns}[c]
|
||||
\column{.45\textwidth}
|
||||
\begin{itemize}
|
||||
\item Area kestabilan metode explicit euler
|
||||
\end{itemize}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[scale=.3]{BAB2/img/equler_explicit.png}
|
||||
\end{figure}
|
||||
\begin{align*}
|
||||
y[k+1] & = (1+h\lambda)y[k] \\
|
||||
& = (1 + z)y[k] \\
|
||||
& = R(z)y[k]
|
||||
\end{align*}
|
||||
\column{.45\textwidth}
|
||||
\begin{itemize}
|
||||
\item Persamaan Model Robot akan diimplementasi pada PC
|
||||
\item Metode implementasi pada PC menggunakan Metode Explicit Euler
|
||||
\item Akan dicari konstanta $h$, sampling time, sampai $z$ dalam range kesetabilan diagram disamping
|
||||
\item Akan dibuktikan secara grafik
|
||||
\end{itemize}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
\note{}
|
||||
\begin{frame}
|
||||
\frametitle{Strategi Uji Coba}
|
||||
\textbf{Analisa Algoritma Dengan Tetangga Statis}
|
||||
\begin{columns}
|
||||
\column{.45\textwidth}
|
||||
\begin{figure}
|
||||
\includegraphics[scale=.4]{BAB3/img/estimate_coordinate.png}
|
||||
\end{figure}
|
||||
\column{.45\textwidth}
|
||||
\begin{itemize}
|
||||
\item Akan dianalisa dengan membandingkan berbagai jarak ($l_a$) untuk mengetahui respon algoritma yang sesuai dan optimal
|
||||
\item Menghasilkan jarak terbaik untuk algoritma cosinus.
|
||||
\item Pembuktian dilakukan secara grafik.
|
||||
\end{itemize}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
\note{}
|
||||
\begin{frame}
|
||||
\frametitle{Strategi Uji Coba}
|
||||
\textbf{Analisa Percobaan Keseluruhan}\\
|
||||
\begin{columns}
|
||||
\column{.45\textwidth}
|
||||
\begin{figure}
|
||||
\includegraphics[scale=.1]{BAB2/img/plotMotion3Robot.png}
|
||||
\end{figure}
|
||||
\column{.45\textwidth}
|
||||
\begin{itemize}
|
||||
\item Melanjutkan analisa static dengan menjalankan semua robot
|
||||
\item Akan menghasilkan grafik respon dari keseluruhan robot
|
||||
\item Hipotesis nya adalah keseluruhan robot akan menjaga jarak formasi dengan baik
|
||||
\end{itemize}
|
||||
\end{columns}
|
||||
|
||||
\end{frame}
|
||||
\note{}
|
||||
\section{End}
|
||||
\begin{frame}
|
||||
\Huge{\centerline{The End}}
|
||||
|
||||
\end{frame}
|
||||
\note{}
|
||||
\begin{frame}
|
||||
\frametitle{Daftar Pustaka}
|
||||
|
||||
\printbibliography
|
||||
\end{frame}
|
||||
\note{}
|
||||
\end{document}
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
thesis.pdf
BIN
thesis.pdf
Binary file not shown.
Loading…
Reference in New Issue