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SUMMARY

We study the local asymptotic stability of undirected formations of single-integrator and double-integrator
modeled agents based on interagent distance control. First, we show that n-dimensional undirected
formations of single-integrator modeled agents are locally asymptotically stable under a gradient control law.
The stability analysis in this paper reveals that the local asymptotic stability does not require the infinitesimal
rigidity of the formations. Second, on the basis of the topological equivalence of a dissipative Hamiltonian
system and a gradient system, we show that the local asymptotic stability of undirected formations of double-
integrator modeled agents in n-dimensional space is achieved under a gradient-like control law. Simulation
results support the validity of the stability analysis. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We study the stability of formations of mobile agents under interagent distance control. Because
the interagent distances are controlled to achieve the desired formation, such an approach might be
called distance-based formation control. The distance-based formation control has recently attracted
research interest, because it is assumed that agents do no share a common coordinate system, and
thus, it is of interest in theoretical and practical aspects.

In the literature, gradient control laws have been dominantly employed for formation control
under the distance-based problem setup. The local asymptotic stability of undirected formations of
single integrators has been addressed in [1–3]. The stability of cycle-free persistent formations has
been studied in [1, 4]. Triangular formations have been studied in [2, 5, 6], and tree formations have
been studied in [7].

Because the existing results have primarily focused on the formations of single-integrator
modeled agents in the plane, we study stability of formations of single-integrator and double-
integrator modeled agents in general n-dimensional space in this paper. Accordingly, the contri-
butions of this paper can be summarized as follows. First, we show that undirected formations of
single-integrator modeled agents in n-dimensional space are locally asymptotically stable under a
gradient control law. Although the dynamics of the agents is described as a gradient system, the
well-known stability analysis results on gradient systems [8] are not straightforwardly applicable
to the agent case because the equilibrium points are not isolated. Focusing on the dynamics of
interagent distances, we provide an elegant approach for the stability analysis of distance-based
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formations. Second, the stability analysis in this paper reveals that any rigid formations are locally
asymptotically stable under the gradient control law. Whereas the stability analyses found in [1–3]
require desired formations to be infinitesimally rigid, we relax the condition in this paper. Finally, we
prove the local asymptotic stability of undirected formations of double-integrator modeled agents in
n-dimensional space under a gradient-like control law. Formation dynamics of the agents under the
control law can be described as a dissipative Hamiltonian system. On the basis of the topological
equivalence of the dissipative Hamiltonian system and a gradient system, which has been studied
in [9], we show that the local asymptotic stability of the undirected formations of double-integrator
modeled agents is achieved. Although the author of [10] has addressed the stability of undirected
formations of double-integrator modeled agents by means of the LaSalle invariance principle, as
pointed out in [1], it is not certain whether the principle can be applied because the equilibrium set
of the formation dynamics is not compact.

The outline of this paper is as follows. In Section 2, mathematical background is reviewed and
formation control problems are formulated. In Sections 3 and 4, stability of undirected formations of
single-integrator and double-integrator modeled agents is analyzed, respectively. Simulation results
are provided in Section 5. Conclusion is then given in Section 6.

2. PRELIMINARIES

The set of nonnegative (respectively, positive) real numbers is denoted by NRC (respectively, RC).
Given a set S , jS j denotes the cardinality of S . Given a vector x, kxk denotes the Euclidean norm
of x. Given a matrix A, Im.A/ denotes the image of A. The rank of A is denoted by Rank.A/. The
matrix In denotes the n-dimensional identity matrix. Given two matrices A and B , A˝B denotes
the Kronecker product of the matrices.

2.1. Basic notions on graphs

A undirected graph G D .V , E/ is defined as a pair of a finite set of nodes V and a finite set of edges
E � V � V such that .i , j / 2 E if and only if .j , i/ 2 E for all i , j 2 V . Note that an undirected
graph always has even number of edges. We often refer to an undirected graph as a graph if there is
no ambiguity. If .i , j / 2 E , then the node i (respectively, j ) is the sink (respectively, source) node
of the edge. The neighbor set Ni of the node i is defined as Ni WD ¹j 2 V W .i , j / 2 Eº.

For the undirected graph G D .V , E/, the edge set E can be partitioned as E D EC [ E� such
that EC and E� are disjoint and .i , j / 2 EC if and only if .j , i/ 2 E�. Let V D ¹1, : : : ,N º and
EC D ¹�C,1, : : : , �C,M º. Then, we define HC D ŒhC,ij � 2RN�M as

hC,ij WD

8<
:

1, if i is the sink node of �C,j ,
�1, if i is the source node of �C,j ,
0, otherwise,

which corresponds to the incidence matrix of the directed graph .V , EC/.

2.2. Graph rigidity

For an undirected graph G D .V , E/, where V D ¹1, : : : ,N º and EC D ¹�C,1, : : : , �C,M º, let pi 2Rn

be the point that is assigned to i 2 V . Then, p D
�
pT1 � � �p

T
N

�T
2 RnN is said to be a realization of

G in Rn. The pair .G,p/ is said to be a framework of G in Rn. By ordering edges in EC, an edge

function gG WRnN !RM associated with .G,p/ is defined as

gG.p/ WD
1

2

�
� � � kpi � pj k

2 � � �
�T

, 8.i , j / 2 EC. (1)
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The rigidity of frameworks is then defined as follows:

Definition 2.1 ([11])
A framework .G,p/ is rigid in Rn if there exists a neighborhood Up of p 2 RnN such that
g�1G .gG.p// \ Up D g�1K .gK.p// \ Up , where K is the complete graph on N -nodes. Further,

the framework .G,p/ is globally rigid in Rn if g�1G .gG.p//D g
�1
K .gK.p//.

Two frameworks .G,p/ and .G, q/ are said to be equivalent if gG.p/D gG.q/, that is, kpi�pj k D
kqi � qj k for all .i , j / 2 EC. Further, they are said to be congruent if kpi � pj k D kqi � qj k for
all i , j 2 V . Thus, the framework .G,p/ is rigid if there exists a neighborhood Up of p 2RnN such
that, for any q 2 Up , if .G,p/ and .G, q/ are equivalent, then they are congruent.

Let m be the dimension of convex hull of ¹p1, : : : ,pN º. The framework .G,p/ is then said to be
infinitesimally rigid in Rn if Rank.@gG.p/=@p/D nN � .mC 1/.2n�m/=2.

2.3. Problem statement

Consider the following N single-integrator modeled agents in n-dimensional space.

Ppi D ui , i D 1, : : : ,N , (2)

where pi 2 Rn and ui 2 Rn are the coordinates of the position and the control input, respectively,
of agent i with respect to the global Cartesian coordinate system g

P
. We assume that the agents

do not necessarily share a common sense of orientation. Because of the absence of a common sense
of orientation, agent i 2 ¹1, : : : ,N º maintains its own local Cartesian coordinate system, whose
origin is located at pi and orientation is not aligned with g

P
. Further, the orientations of the local

coordinate systems are not aligned with each other. We denote the local coordinate system of agent
i by i

P
. By adopting a notation in which superscripts are used to denote coordinate systems, the

position dynamics of the agents can be written as

Ppii D u
i
i , i D 1, : : : ,N , (3)

where pii 2 Rn and uii 2 Rn are the coordinates of the position and the control input, respectively,
of agent i with respect to i

P
.

The sensing topology among the agents is modeled by an undirected graph G D .V , E/. We
refer to the graph as the sensing graph of the agents. We then assume that each agent measures the
relative positions of its neighboring agents with respect to its own local coordinate system. Thus,
the following measurements are available to agent i 2 V ,

pij i WD p
i
j � p

i
i � p

i
j , 8j 2Ni , (4)

where pij is the coordinate of the position of agent j with respect to i
P

.

For a given realization p� D
�
p�T1 � � �p

�T
N

�T
2RnN , we define the desired formation Ep� of the

agents as the set of formations that are congruent to p�:

Ep� WD
®
p 2RnN W kpj � pik D kp

�
j � p

�
i k, 8i , j 2 V

¯
. (5)

Then, the formation control problem for the single-integrator modeled agents is stated as follows:

Problem 2.1
For N single-integrator modeled agents (2) in n-dimensional space, suppose that the sensing graph
of the agents is given by an undirected graph G D .V , E/. Given a realization p� 2 RnN , design a
decentralized control law on the basis of measurements (4) such that Ep� is asymptotically stable
under the decentralized control law.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:1809–1820
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A formation control problem for double-integrator modeled agents is similarly formulated. We
consider the following N double-integrator modeled agents in n-dimensional space:²

Ppi D vi ,
Pvi D ui ,

i D 1, : : : ,N , (6)

where pi 2 Rn, vi 2 Rn, and ui 2 Rn denote the position, the velocity, and the control input,
respectively, of agent i with respect to g

P
. Then, we assume that each agent measures its own

velocity and the relative positions of its neighbors with respect to its own local coordinate system.

Further, given a realization p� D
�
p�T1 � � �p

�T
N

�T
2 RnN , we define the desired formation Ep�,v�

of the agents as

Ep�,v� WD
°�
pT vT

�T
2R2nN W kpj � pik D kp

�
j � p

�
i k, v D 0, 8i , j 2 V

±
.

Then, the formation control problem for the double-integrator modeled agents is stated as follows:

Problem 2.2
For N double-integrator modeled agents (6) in n-dimensional space, suppose that the sensing graph
of the agents is given by a undirected graph G D .V , E/. Given a realization p� 2 RnN , design a
decentralized control law on the basis of the velocities of the agents and measurements (4) such that
Ep�,v� is asymptotically stable under the decentralized control law.

3. UNDIRECTED FORMATIONS OF SINGLE INTEGRATORS

3.1. Gradient control law

Consider the single-integrator modeled agents under the assumptions of Problem 2.1. For each agent
i , let us define a local potential �i WRn.jNi jC1/!

NRC as follows:

�i
�
pii , : : : ,p

i
j , : : :

�
WD

kp

2

X
j2Ni

�
�
kpij � p

i
i k
2 � kp�j � p

�
i k
2
�

, (7)

where kp > 0 and � WR! NRC is a function that satisfies the following assumption:

Assumption 3.1
The function � WR! NRC satisfies the following conditions:

� Positive definiteness: �.x/> 0 for any x 2R and �.x/D 0 if and only if x D 0;
� Analyticity: � is analytic in a neighborhood of 0.

On the basis of the local potential function �i , a control law for agent i can be designed as

uii D�rpi
i
�i
�
pii , : : : ,p

i
j , : : :

�

��

2
4@�i

�
pii , : : : ,p

i
j , : : :

�
@pii

3
5
T

D�

2
4kp
2

X
j2Ni

@�
�
Qdj i

�
@ Qdj i

@ Qdj i

@pii

3
5
T

D kp
X
j2Ni

@�
�
Qdj i

�
@ Qdj i

pij , (8)
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where Qdij WD kpij � p
i
i k
2 � kp�j � p

�
i k
2. It is worth noting that the gradient control law (8) is

decentralized in the sense that it can be implemented in the local coordinate systems of the agents
by using only the measurements (4).

Although the gradient control law (8) is implemented in i
P

in practice, it is convenient to
represent the dynamics agents with respect to g

P
for stability analysis. Thus, we represent (8)

with respect to g
P

by a suitable coordinate transformation. Let Bg be the standard basis for g
P

and Bi for i
P

. Further, let ŒIn�B
i

Bg be the Bi �Bg basis representation of the n-dimensional identity
linear transformation. Then, we have the following relationship [12]:

pj � pi D ŒIn�
Bi
Bgp

i
j , (9a)

ui D ŒIn�
Bi
Bgu

i
i . (9b)

On the basis of (9), the gradient control law (8) can be represented with respect to g
P

as follows:

ui D ŒIn�B
i

Bgu
i
i

D ŒIn�B
i

Bgkp
X
j2Ni

@�. Qdj i /

@ Qdj i
pij

D kp
X
j2Ni

@�. Qdj i /

@ Qdj i
.pj � pi /,

which shows that

ui D�rpi�i .pi , : : : ,pj , : : :/. (10)

Note that Qdij D kpij � p
i
i k
2 � kp�j � p

�
i k
2 � kpj � pik

2 � kp�j � p
�
i k
2.

3.2. Stability analysis

In the following paragraphs, we first show that the overall dynamics of the agents can be described
as a gradient system. Although the properties of gradient systems are well known [8], the existing
results are not directly applicable to the gradient system because its critical points are not isolated
in general. Further, the noncompactness of the desired formation Ep� makes stability analysis com-
plicated. Note that Ep� contains all realization congruent to p�. To overcome this challenging
point, we then describe the overall dynamics of the agents by the interagent displacements, thereby
defining the desired formation as a compact set. This allows us to investigate the stability of the
desired formation based on a property of gradient systems.

We define a set E 0p� , which is the set of realizations that are equivalent to .G,p�/, as follows:

E 0p� WD
®
p 2RnN W kpj � pik D kp

�
j � p

�
i k, 8.i , j / 2 EC

¯
. (11)

Obviously, Ep� � E 0p� . In the case that .G,p�/ is rigid, for any Np 2 Ep� , there exists a neighbor-
hood U Np of Np such that Ep� \ U Np D E 0p� \ U Np . In the following, we show the local asymptotic
stability of E 0p� . The local asymptotic stability of Ep� is then followed by the rigidity of .G,p�/.

To show that the overall dynamics of the agents can be described as a gradient system, we define
a global potential function � for the agents as

�.p/ WD
kp

2

X
.i ,j /2EC

�
�
kpj � pik

2 � kp�j � p
�
i k
2
�

. (12)

On the basis of the fact that

ui D�rpi�i .pi , : : : ,pj , : : :/��rpi�.p/,

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:1809–1820
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the overall dynamics of the agents under the gradient control law (10) can be described as the
following gradient system:

Pp D�r�.p/. (13)

Although the stability property of an isolated equilibrium point of gradient systems is well-known
[8], the desired formation E 0p� consists of nonisolated points.

The noncompactness of E 0p� makes stability analysis complicated. To avoid the complicatedness,

we describe the dynamics by interagent displacements. We define the link e 2RnM of .G,p/ as

e D
�
eT1 � � � e

T
M

�T
WD
�
HT
C ˝ In

�
p, (14)

which has been introduced in [3]. From the definition (14), e belongs to the column space of
HT
C ˝ In, that is, e 2 Im

�
HT
C ˝ In

�
. The space Im

�
HT
C ˝ In

�
is referred to as the link space

associated with the framework .G,p/. We then define a function vG W Im
�
HT
C ˝ In

�
!RM as

vG.e/ WD
1

2

�
ke1k

2 � � � keMk
2
�T

,

which can be regarded as the edge function gG parameterized in the link space. That is, without loss
of generality, we can assume that gG.p/� vG

��
HT
C ˝ In

�
p
�
. Define

D.e/ WD diag.e1, : : : , eM /

to obtain

@gG.p/

@p
D
@vG.e/

@e

@e

@p

D ŒD.e/�T
�
HT
C ˝ In

�
,

which leads to

Pp D�r�.p/��

�
@�.p/

@p

	T

D�

"
@�.p/

@ Qd

@ Qd

@p

#T

D�

�
@�.p/

@ Qd

@gG.p/

@p

	T
D�kp .HC˝ In/D.e/�

�
Qd
�

,

where Qd WD
�
ke1k

2 � ke�1k
2 � � � keMk

2 � ke�Mk
2
�T

, e� D
�
e�T1 � � � e

�T
M

�T
WD
�
HT
C ˝ In

�
p�, and

�
�
Qd
�
WD

2
4@�

�
Qd1

�
@ Qd1

� � �
@�
�
QdM

�
@ QdM

3
5
T

.

Then, the gradient system (13) can be described in the link space as follows:

Pe D
�
HT
C ˝ In

�
Pp

D�kp
�
HT
C ˝ In

�
.HC˝ In/D.e/�

�
Qd
�

. (15)

Further, the set E 0p� can be parameterized in the link space as follows:

E 0e� WD
®
e 2 Im

�
HT
C ˝ In

�
W keik D ke

�
i k, 8i D 1, : : : ,M

¯
.
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DOI: 10.1002/rnc

Anggoro Dwi Nur Rohman
Definisi e



DISTANCE-BASED UNDIRECTED FORMATIONS 1815

As remarked in [3], E 0e� is compact, whereas E 0p� is not. We exploit the compactness of E 0e� in the
proof of Theorem 3.2.

To analyze the stability of E 0e� , we define V W Im
�
HT
C ˝ In

�
! NRC as

V.e/ WD

MX
iD1

1

2
�
�
keik

2 � ke�i k
2
�

.

The time derivative of V can be arranged as

PV .e/D
@V.e/

@e
Pe

D�kp
@V.e/

@e

�
HT
C ˝ In

�
.HC˝ In/D.e/�

�
Qd
�

D�kp

h
D.e/�

�
Qd
�iT

.HC˝ In/
T„ ƒ‚ …

D�Œr�.p/�T

.HC˝ In/D.e/�
�
Qd
�

„ ƒ‚ …
D�r�.p/

D�kpkr�.p/k
2

6 0,

which shows the local stability of E 0e� . Then, the local asymptotic stability of E 0e� can be ensured
by showing the existence of a neighborhood UE 0

e�
of E 0e� such that, for any e 2 UE 0

e�
, if e 62 Ee� ,

then PV .e/ < 0.
The following inequality, which is known as the Lojasiewicz theorem, is useful for the stability

analysis of gradient systems.

Theorem 3.1 ([13])
Suppose that f WD �Rnf !R is a real analytic function in a neighborhood of ´ 2D. There exist
constants kf > 0 and �f 2 Œ0, 1/ such that

krf .x/k> kf kf .x/� f .´/k�f

in some neighborhood of ´.

On the basis of Theorem 3.1, we obtain the following lemma:

Lemma 3.1
For any Np 2 E 0p� , there exists a neighborhood U Np of Np such that, for any p 2 U Np and p 62 E 0p� ,
kr�.p/k> 0.

Proof
Because � is analytic in some neighborhood of 0, for any Np 2 E 0p� , there exists a neighborhood of
Np such that � is analytic in the neighborhood. Thus, it follows from Theorem 3.1 that there exist
k� > 0, �� 2 Œ0, 1/, and a neighborhood U Np of Np such that

kr�.p/k> k�k�.p/� �. Np/k�� D k�k�.p/k�� ,

for all p 2 U Np . Further, �.p/D 0 if and only if p 2E 0p� by the positive definiteness of � . Thus, for
any p 2 U Np and p 62E 0p� , kr�.p/k> 0. �

The local asymptotic stability of E 0p� is then ensured on the basis of Lemma 3.1 as follows:

Theorem 3.2
The set E 0p� is locally asymptotically stable with respect to (13).

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:1809–1820
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Proof
We prove this theorem by showing that E 0e� is locally asymptotically stable with respect to (15). To
show the local asymptotic stability of E 0e� , we construct a neighborhood of E 0e� such that PV .e/> 0
for any e in the neighborhood and PV .e/D 0 if and only if e 2E 0e� .

It follows from Lemma 3.1 that, for any Np 2 E 0p� , there exists a neighborhood U Np of Np such that

kr�.p/k> 0 for all p 2 U Np and � 62E 0p� . We take r�p > 0 such that®
p 2RnN W kp � Npk< r�p

¯
� U Np . (16)

Define

UE 0
e�
.re/ WD

´
e 2 Im

�
HT
C ˝ In

�
W inf
�2E 0

e�

ke � 	k< re

μ
.

Let r�e D 
min
�
HT
C ˝ In

�
r�p , where 
min

�
HT
C ˝ In

�
denotes the nonzero smallest singular value of

HT
C ˝ In. Then, for any e 2 UE 0

e�

�
r�e
�
, there exists Ne 2E 0e� such that

inf
�2E 0

e�

ke � 	k D ke � Nek< r�e

because E 0e� is compact and ke� 	k is a continuous function of 	 [14]. From the fact that .e � Ne/ 2
Im
�
HT
C ˝ In

�
, there always exist p 2RnN and Np 2E 0p� such that

�
HT
C ˝ In

�
.p � Np/D e� Ne and

.p � Np/ 2 Im
�
HT
C ˝ In

�
. Because p � Np belongs to the row space of HT

C ˝ In, we obtain


min
�
HT
C ˝ In

�
kp � Npk6 ke � Nek D k

�
HT
C ˝ In

�
.p � Np/ k. (17)

Thus, we have

kp � Npk6 ke � Nek


min
�
HT
C ˝ In

� < r�p ,

which implies that p 2 U Np from (16). It follows from Lemma 3.1 that if e 62E 0e� ,

PV .e/D�kpkr�.p/k
2 < 0,

which implies that E 0e� is locally asymptotically stable with respect to (15). Thus, E 0p� is locally
asymptotically stable with respect to (13). �

Then, the local asymptotic stability of Ep� is ensured if .G,p�/ is rigid.

Theorem 3.3
If .G,p�/ is rigid, the set Ep� is locally asymptotically stable with respect to (13).

Proof
From Theorem 3.2, E 0p� is locally asymptotically stable. Because .G,p�/ is rigid, it follows from
the definition of the graph rigidity that, for any Np 2 Ep� , there exists a neighborhood U Np of Np such
that Ep� \ U Np D E 0p� \ U Np . This implies that Ep� is locally asymptotically stable with respect
to (13). �

Although Theorem 3.3 confirms the local asymptotic stability of Ep� under the condition that
.G,p�/ is rigid, it does not ensure the convergence of p to a finite realization in Ep� . The conver-
gence property is ensured by the fact that the centroid of an undirected formation is stationary under
the gradient control law (8), that is, .1=N /

P
i2V Ppi D 0. Because Ep� is locally asymptotically

stable and the centroid is stationary, p converges to a finite realization in Ep� .

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:1809–1820
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Remark 3.1
Two remarks are in order here. First, we present an elegant approach for the stability analysis of
undirected formations in n-dimensional space. Because it is challenging to analyze the stability of
the noncompact equilibrium set Ep� , we focus on the link dynamics (15) to obtain the stability
analysis result in this section. A property of gradient systems and the link dynamics interplay in
the stability analysis. Second, the stability analysis in this section reveals that the local asymptotic
stability of Ep� does not necessarily require the infinitesimal rigidity of the framework .G,p�/.
Note that the results in [1–3] require .G,p�/ to be infinitesimally rigid because the rank condition
of the matrix @gG=.p/@pjpDp� is crucial in the proofs of the existing results.

4. UNDIRECTED FORMATIONS OF DOUBLE INTEGRATORS

Consider the double-integrator modeled agents under the assumptions of Problem 2.2. Because each
agent measures its own velocity and the relative distances of its neighboring agents, we can design
a formation control law for the agents as follows:

uii D�kvv
i
i � kp

X
j2Ni

@�
�
Qdj i

�
@ Qdj i

pij ,

which can be represented with respect to g
P

as follows:

ui D�kvvi � kp
X
j2Ni

@�
�
Qdj i

�
@ Qdj i

.pi � pj /.

Defining

 .p, v/ WD
1

2

X
i2V
kvik

2C
kp

2

MX
iD1

�
�
kpj � pik

2 � d�ij
�

,

the overall dynamics of the agents can be described as a dissipative Hamiltonian system:

Pp D v

Drv , (18a)

Pv D�kvv � kp.HC˝ In/D.e/ Qd

D�kvrv �rp , (18b)

where kp > 0, kv > 0, and v D
�
vT1 � � � v

T
N

�T
.

We now consider the following one-parameter family H� of dynamical systems, which combines
the dissipative Hamiltonian system (18) and a gradient system as follows:�

Pp
Pv

	
D



.1� �/

�
0 InN
�InN 0

	
�

�
��InN 0

0 kvInN

	��
rp 
rv 

	

D�

�
�InN �.1� �/InN

.1� �/InN kvInN

	
„ ƒ‚ …

W�WD

�
rp 
rv 

	
, (19)

where � 2 Œ0, 1�. The parameterized system (19) continuously interpolates between the Hamiltonian
system (18) and a gradient system by means of convex combination. When �D 0, the parameterized
system (19) reduces into the Hamiltonian system (18). In the case that �D 1, (19) reduces into the
following gradient system:

Pp D�rp , (20a)
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Pv D�kvrv . (20b)

It has been revealed that parameterized systems of the form (19) have the identical equilibrium
set and the identical local stability properties for all � 2 Œ0, 1� [9] as stated in the following theorem:

Theorem 4.1 ([9])
For the one-parameter family H� of dynamical systems in (19), the following statements hold
independently of the parameter � 2 Œ0, 1�.

� Equilibrium set: For all � 2 Œ0, 1�, the equilibrium set of H� is given by the set of critical points
of the potential function  , that is, Ep,v D

®
ŒpT vT �T W r D 0

¯
.

� Local stability: For any equilibrium ŒpT vT �T 2 Ep,v and for all � 2 Œ0, 1�, the numbers of the
stable, neutral, and unstable eigenvalues of the Jacobian of H� are not dependent on �.

Theorem 4.1 allows us to study the local stability of the formation dynamics (18) by investigating
the local stability of the gradient system (20). Because subsystems (20a) and (20b) are decoupled, we
investigate the local stability of each subsystem. First, the subsystem (20a) coincides to the gradient
system (13), and thus, both systems have the same stability property. Thus, the local stability of
E 0p� and Ep� , which are defined in (11) and (5), respectively, follows from Theorems 3.2 and 3.3
with respect to (20a). Second, the only equilibrium point of (20b) is obviously the origin, and it is
globally exponentially stable.

We present the main result of this section, which confirms the local asymptotic stability of the
desired formation of the double-integrator modeled agents.

Theorem 4.2
If .G,p�/ is rigid, the set Ep�,v� is locally asymptotically stable with respect to (18).

The dynamics of the centroid of the agents is given by .1=N /
P
i2V RpiCkv.1=N /

P
i2V Ppi D 0,

which implies that the centroid converges to a finite point. This ensures the convergence of p to a
finite realization.

Remark 4.1
The stability of undirected formations of double-integrator modeled agents has been studied in [10]
on the basis of the LaSalle invariance principle. However, it is not certain whether the principle can
be applied to Ep�,v� , which is a noncompact invariant set with respect to (18). Note that the proof
of LaSalle’s theorem found in [15] requires the compactness of the invariant set.

5. SIMULATION RESULTS

We present the simulation results of formation control of five single-integrator and double-integrator
modeled agents in three-dimensional space. The sensing graph for both kinds of agents is depicted in
Figure 1. The function � is defined as �.x/D .1=2/x2, which is popularly adopted in the literature.

For the single-integrator modeled agents, we assume that p�1 D
h
0 0 10

p
5
iT

, p�2 D Œ0 20 0�T ,

p�3 D
h
�10
p
3 � 10 0

iT
, p�4 D

h
10
p
3 � 10 0

iT
, and p�5 D

h
0 0 � 10

p
5
iT

. Thus, the desired

interagent distances kp�j�p
�
i k for all .i , j / 2 E are 30. The components of the initial positions pi .0/

for all i 2 V are randomly perturbed from those of p�i by a random variable uniformly distributed
on Œ�7.5, 7.5�. Figure 2 shows the formation p and the interagent distance errors of the five single
integrators. The formation of the agents converges to the desired formation, and the interagent errors
converge to zero as depicted in the figure.

For the double-integrator modeled agents, p� is given as the same as that for the single-
integrator modeled agents. The initial positions are also given as the same as those for the single-
integrator modeled agents. The components of the initial velocities of the double-integrator group

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:1809–1820
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Figure 1. Sensing graph for five agents.
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Figure 2. Simulation result for five single integrators.
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Figure 3. Simulation result for five double integrators.

are randomly given by a random variable uniformly distributed on Œ�5, 5�. As depicted in Figure 3,
the formation p converges to a finite realization congruent to p�, and the interagent distance errors
converge to zero.
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6. CONCLUSION

In this paper, we have studied the local asymptotic stability of n-dimensional undirected formations
of single-integrator and double-integrator modeled agents in the distance-based problem setup. To
overcome the challenging stability analysis, we have focused on the link dynamics of the agents,
which allows us to utilize the property of gradient systems. This approach was useful for the inves-
tigation of the stability of a gradient system having noncompact equilibrium set. We also have
revealed that a rigid formation is locally asymptotically stable even if it is not infinitesimally rigid,
whereas infinitesimal rigidity has been usually assumed in the literature. On the basis of the topo-
logical equivalence of a Hamiltonian system and a gradient system, the local asymptotic stability of
the double-integrator modeled agent formation has been proved.
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